55 research outputs found

    Tracking the History and Evolution of Entities: Entity-centric Temporal Analysis of Large Social Media Archives

    Get PDF
    How did the popularity of the Greek Prime Minister evolve in 2015? How did the predominant sentiment about him vary during that period? Were there any controversial sub-periods? What other entities were related to him during these periods? To answer these questions, one needs to analyze archived documents and data about the query entities, such as old news articles or social media archives. In particular, user-generated content posted in social networks, like Twitter and Facebook, can be seen as a comprehensive documentation of our society, and thus meaningful analysis methods over such archived data are of immense value for sociologists, historians and other interested parties who want to study the history and evolution of entities and events. To this end, in this paper we propose an entity-centric approach to analyze social media archives and we define measures that allow studying how entities were reflected in social media in different time periods and under different aspects, like popularity, attitude, controversiality, and connectedness with other entities. A case study using a large Twitter archive of four years illustrates the insights that can be gained by such an entity-centric and multi-aspect analysis.Comment: This is a preprint of an article accepted for publication in the International Journal on Digital Libraries (2018

    Towards Cohesion-Fairness Harmony: Contrastive Regularization in Individual Fair Graph Clustering

    Full text link
    Conventional fair graph clustering methods face two primary challenges: i) They prioritize balanced clusters at the expense of cluster cohesion by imposing rigid constraints, ii) Existing methods of both individual and group-level fairness in graph partitioning mostly rely on eigen decompositions and thus, generally lack interpretability. To address these issues, we propose iFairNMTF, an individual Fairness Nonnegative Matrix Tri-Factorization model with contrastive fairness regularization that achieves balanced and cohesive clusters. By introducing fairness regularization, our model allows for customizable accuracy-fairness trade-offs, thereby enhancing user autonomy without compromising the interpretability provided by nonnegative matrix tri-factorization. Experimental evaluations on real and synthetic datasets demonstrate the superior flexibility of iFairNMTF in achieving fairness and clustering performance.Comment: To be published in "The 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2024)

    RHALE: Robust and Heterogeneity-aware Accumulated Local Effects

    Full text link
    Accumulated Local Effects (ALE) is a widely-used explainability method for isolating the average effect of a feature on the output, because it handles cases with correlated features well. However, it has two limitations. First, it does not quantify the deviation of instance-level (local) effects from the average (global) effect, known as heterogeneity. Second, for estimating the average effect, it partitions the feature domain into user-defined, fixed-sized bins, where different bin sizes may lead to inconsistent ALE estimations. To address these limitations, we propose Robust and Heterogeneity-aware ALE (RHALE). RHALE quantifies the heterogeneity by considering the standard deviation of the local effects and automatically determines an optimal variable-size bin-splitting. In this paper, we prove that to achieve an unbiased approximation of the standard deviation of local effects within each bin, bin splitting must follow a set of sufficient conditions. Based on these conditions, we propose an algorithm that automatically determines the optimal partitioning, balancing the estimation bias and variance. Through evaluations on synthetic and real datasets, we demonstrate the superiority of RHALE compared to other methods, including the advantages of automatic bin splitting, especially in cases with correlated features.Comment: Accepted at ECAI 2023 (European Conference on Artificial Intelligence

    FairBranch: Fairness Conflict Correction on Task-group Branches for Fair Multi-Task Learning

    Full text link
    The generalization capacity of Multi-Task Learning (MTL) becomes limited when unrelated tasks negatively impact each other by updating shared parameters with conflicting gradients, resulting in negative transfer and a reduction in MTL accuracy compared to single-task learning (STL). Recently, there has been an increasing focus on the fairness of MTL models, necessitating the optimization of both accuracy and fairness for individual tasks. Similarly to how negative transfer affects accuracy, task-specific fairness considerations can adversely influence the fairness of other tasks when there is a conflict of fairness loss gradients among jointly learned tasks, termed bias transfer. To address both negative and bias transfer in MTL, we introduce a novel method called FairBranch. FairBranch branches the MTL model by assessing the similarity of learned parameters, grouping related tasks to mitigate negative transfer. Additionally, it incorporates fairness loss gradient conflict correction between adjoining task-group branches to address bias transfer within these task groups. Our experiments in tabular and visual MTL problems demonstrate that FairBranch surpasses state-of-the-art MTL methods in terms of both fairness and accuracy
    • …
    corecore