3 research outputs found

    Thermalization through Hagedorn states - the importance of multiparticle collisions

    Full text link
    Quick chemical equilibration times of hadrons within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme master equations are employed for the chemical equilibration of various hadronic particles like (strange) baryon and antibaryons. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both Tc =176 MeV and Tc=196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states.Comment: 8 pages, 3 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - Oct. 2, 200

    Particle Ratios and the QCD Critical Temperature

    Full text link
    We show how the measured particle ratios at RHIC can be used to provide non-trivial information about the critical temperature of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are used to describe hadronic yields. Hagedorn states are relevant close to TcT_c and have been shown to decrease η/s\eta/s to the KSS limit and allow for quick chemical equilibrium times in dynamical calculations of hadrons. The inclusion of Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, THT_H, which is assumed to be equal to TcT_c, and leads to an overall improvement of thermal fits. We find that for Au+Au collisions at RHIC at sNN=200\sqrt{s_{NN}}=200 GeV the best square fit measure, χ2\chi^2, occurs at Tc∼176T_c \sim 176 MeV and produces a chemical freeze-out temperature of 170.4 MeV and a baryon chemical potential of 27.8 MeV.Comment: 6 pages, 2 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - oct. 2, 200
    corecore