28 research outputs found

    Electromagnetic Wave Transmission Through a Subwavelength Nano-hole in a Two-dimensional Plasmonic Layer

    Full text link
    An integral equation is formulated to describe electromagnetic wave transmission through a sub-wavelength nano-hole in a thin plasmonic sheet in terms of the dyadic Green's function for the associated Helmholtz problem. Taking the subwavelength radius of the nano-hole to be the smallest length of the system, we have obtained an exact solution of the integral equation for the dyadic Green's function analytically and in closed form. This dyadic Green's function is then employed in the numerical analysis of electromagnetic wave transmission through the nano-hole for normal incidence of the incoming wave train. The electromagnetic transmission involves two distinct contributions, one emanating from the nano-hole and the other is directly transmitted through the thin plasmonic layer itself (which would not occur in the case of a perfect metal screen). The transmitted radiation exhibits interference fringes in the vicinity of the nano-hole, and they tend to flatten as a function of increasing lateral separation from the hole, reaching the uniform value of transmission through the sheet alone at large separations.Comment: 14 pages, 24 individual figures organized in 9 captioned group

    Inverse Spin Hall Effect by Spin Injection

    Full text link
    Motivated by a recent experiment[Nature {\bf 442}, 176 (2006)], we present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Our theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering, while its spatial variation is determined by the intrinsic spin-orbit coupling.Comment: 5 pages, 3 figure

    Qubit measurement using a quantum point contact with a quantum Langevin equation approach

    Full text link
    We employ a quantum Langevin equation approach to establish non-Markovian dynamical equations, on a fully microscopic basis, to investigate the measurement of the state of a coupled quantum dot qubit by a nearby quantum point contact. The ensuing Bloch equations allow us to examine qubit relaxation and decoherence induced by measurement, and also the noise spectrum of meter output current with the help of a quantum regression theorem, at arbitrary bias-voltage and temperature. Our analyses provide a clear resolution of a recent debate concerning the occurrence of a quantum oscillation peak in the noise spectrum.Comment: 5 pages, 3 figures, submitted, published version in Phys. Rev.

    Electron Spin Dynamics in Semiconductors without Inversion Symmetry

    Full text link
    We present a microscopic analysis of electron spin dynamics in the presence of an external magnetic field for non-centrosymmetric semiconductors in which the D'yakonov-Perel' spin-orbit interaction is the dominant spin relaxation mechanism. We implement a fully microscopic two-step calculation, in which the relaxation of orbital motion due to electron-bath coupling is the first step and spin relaxation due to spin-orbit coupling is the second step. On this basis, we derive a set of Bloch equations for spin with the relaxation times T_1 and T_2 obtained microscopically. We show that in bulk semiconductors without magnetic field, T_1 = T_2, whereas for a quantum well with a magnetic field applied along the growth direction T_1 = T_2/2 for any magnetic field strength.Comment: to appear in Proceedings of Mesoscopic Superconductivity and Spintronics (MS+S2002

    Shot noise of inelastic tunneling through quantum dot systems

    Full text link
    We present a theoretical analysis of the effect of inelastic electron scattering on current and its fluctuations in a mesoscopic quantum dot (QD) connected to two leads, based on a recently developed nonperturbative technique involving the approximate mapping of the many-body electron-phonon coupling problem onto a multichannel single-electron scattering problem. In this, we apply the B\"uttiker scattering theory of shot noise for a two-terminal mesoscopic device to the multichannel case with differing weight factors and examine zero-frequency shot noise for two special cases: (i) a single-molecule QD and (ii) coupled semiconductor QDs. The nonequilibrium Green's function method facilitates calculation of single-electron transmission and reflection amplitudes for inelastic processes under nonequilibrium conditions in the mapping model. For the single-molecule QD we find that, in the presence of the electron-phonon interaction, both differential conductance and differential shot noise display additional peaks as bias-voltage increases due to phonon-assisted processes. In the case of coupled QDs, our nonperturbative calculations account for the electron-phonon interaction on an equal footing with couplings to the leads, as well as the coupling between the two dots. Our results exhibit oscillations in both the current and shot noise as functions of the energy difference between the two QDs, resulting from the spontaneous emission of phonons in the nonlinear transport process. In the "zero-phonon" resonant tunneling regime, the shot noise exhibits a double peak, while in the "one-phonon" region, only a single peak appears.Comment: 10 pages, 6 figures, some minor changes, accepted by Phys. Rev.
    corecore