21 research outputs found

    Transmission electron microscopy of Bruch membrane of mice exposed to air (A) or cigarette smoke (B,C).

    No full text
    <p>A. Mouse exposed to air shows regular basal infoldings (BI) of the RPE and unthickened Bruch membrane (BrM). B. The RPE show loss of basal infoldings. Bruch membrane is thickened due to an outer collagenous layer deposit (OCL). C. The RPE show more severe loss of basal infoldings than in (B). Bruch membrane contains early basal laminar deposits (*), OCL, and choriocapillaris (CC) basement membrane reduplication (arrows). Bar = 500 nm.</p

    TUNEL labeling of RPE cells from mice exposed to cigarette smoke for 6 months.

    No full text
    <p>A. TUNEL labeled (red) RPE nuclei are indicated by the arrows. B. Nuclei are stained with DAPI (blue), as labeled by the arrows. C. Merged image of A and B separating TUNEL from DAPI only stained nuclei. D. Brightfield image of the RPE, choroid (Ch) and sclera (S). E. Merged image of a mouse raised in air for 6 months. Arrows point to blue DAPI without red TUNEL labeling. Bar = 15 μm.</p

    Immunohistochemistry of 8-OHdG nuclear labeling of the RPE.

    No full text
    <p>8 month C57Bl6 mouse exposed to smoke for 6 months showing A. DAPI labeled nuclei (arrows); B. 8-OHdG labeled RPE nuclei (arrows); C. Merged image of A and B with the Brightfield image showing violet nuclei (arrows); D. Merged image of DAPI and IgG1 control image with Brightfield image overlay. 8 month old C57Bl6 mouse raised in air showing DAPI labeled RPE nuclei in E and 8-OHdG immunostaining in F; G. Merged DAPI and 8-OHdG immunostained image with Brightfield image overlay showing blue nuclei in H. Brightfield image. RPE, retinal pigmented epithelium; Ch, choroid. Bar = 15 μm. Figure shows representative images from N = 10 mice (50 samples/mouse).</p

    Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina

    No full text
    <div><p>Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight). Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS), oxidative and endoplasmic reticulum (ER) stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo-stress and contribute to developing a new, potentially useful therapeutic approach using bilberry extract for preventing retinal photo-damage.</p></div

    Suppression of photo-induced tight junction disruption in the RPE by bilberry extract.

    No full text
    <p>(a) Immunostaining for ZO-1 in flat mount samples 24 h after light exposure showed a decrease in RPE cells. (b) The number of RPE cells with an intact ZO-1 pattern at all cell edges per total RPE cells is graphically represented. (c) ho-1 mRNA expression was measured using real-time RT-PCR. RPE, retinal pigment epithelium; n = 6/ group. **p < 0.01. Scale bar, 20 μm.</p

    Suppression of photo-induced retinal oxidative and ER stress by both bilberry extract or NAC.

    No full text
    <p>(a–f) mRNA expression of markers of oxidative and ER stress was measured using real-time RT-PCR. Expression of (a) ho-1, (b) bip, (c) chop, (d) aft4, (e) xbp1s, and (f) sec24d mRNA was upregulated at 12 h in photo-stressed retinas; however, treatment with bilberry extract attenuated these increases in mRNA expression. n = 5/ group. ER, endoplasmic reticulum. **P < 0.01 and *P < 0.05.</p

    A proposed model of rapamycin’s neuroprotective effect during retinal inflammation.

    No full text
    <p>The basal level of activated mTOR promoted NF-κB activation during inflammation, which induced the retinal expression of the inflammatory cytokines, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). Activated NF-κB elevated the activated and phosphorylated mTOR (pmTOR) level during inflammation, which may have exacerbated the pathogenesis. The subsequent retinal activation of signal transducer and activator of transcription 3 (STAT3), at least partly, reduced the rhodopsin protein expression in a post-transcriptional manner and impaired rod photoreceptor function. Rapamycin also attenuated inflammatory leukocyte adhesion to the vessel walls, and increased potentially neuroprotective autophagy in the retina during inflammation.</p

    Suppression of nuclei ATF4 in Müller glial cells by bilberry extract.

    No full text
    <p>(a-d) Co-immunostaining for ATF4 (green) and glutamine synthetase (red), a marker for Müller glial cell, 12 h after light exposure. ATF4 staining was observed in the nuclei (DAPI, blue) of Müller glial cells after light exposure; however, this translocation was suppressed by bilberry extract (c) or NAC (d). n = 5/ group. Scale bar, 10 μm.</p

    Suppression of photo-induced visual function impairment by bilberry extract.

    No full text
    <p>Analysis of full-field scotopic (a-e) and photopic (f-h) ERGs following light exposure. Representative waveforms of scotopic (a) and photopic (f) ERG from individual mice treated with vehicle or bilberry extract in response to one flash 4 days after light exposure. The amplitude of a- and b-waves in scotopic ERG (b and c) and b-wave in photopic ERG (g) was decreased by light exposure, and these changes were attenuated by treatment with bilberry extract. No differences were observed in a- or b-wave implicit times in both scotopic and photopic ERG (d, e and h). n = 6/ group. ERG, electroretinogram. **P < 0.01 and *P < 0.05.</p

    Suppression of photo-induced histological changes in the retina by bilberry extract.

    No full text
    <p>(a) TUNEL assay performed 2 days after light exposure. TUNEL-positive cells (red) appeared only in the ONL following light exposure. The number of apoptotic cells was significantly reduced by bilberry extract. DAPI staining of the control is shown as a guide for retinal layers. (b) H&E staining of retinal sections 4 days after light exposure. ONL thickness was lower in vehicle-treated, light-exposed mice than in vehicle-treated, non-light-exposed mice. Photo-induced ONL thinning was significantly attenuated by bilberry extract treatment. (c and d) Rhodopsin (c) and blue opsin (d) immunostaining 4 days after light exposure. The OS lengths of both rod (c) and cone (d) photoreceptors were lower in vehicle-treated light-exposed mice than in vehicle-treated non-light exposed mice. Photo-induced OS shortening was significantly attenuated by bilberry extract treatment (n = 4/ group). Scale bar, 25 μm. ONL, outer nuclear layer; DAPI, 4',6-diamidino-2-phenylindole; H&E, hematoxylin and eosin; IS, inner segment; OS, outer segment. **P < 0.01.</p
    corecore