170 research outputs found

    Large-scale extrusion processing and characterization of hybrid nylon-6/SiO2 nanocomposites

    Get PDF
    Solution impregnations, pulltrusion and film stacking are widely used methods to prepare thermoplastic composite materials. Extruders are used to melt the polymer and to incorporate fibers into the polymer in order to modify physical properties. In this article, the compounding of colloidal silica nanoparticles filled polyamide-6 (PA-6) is achieved using a twin-screw extruder, which has a significant market share due to its low cost and easy maintenance. The experiments were performed at 250 rpm and the bulk throughput was 6 kg h(-1) with a pump pressure of 30 bars. The composites were characterized with nuclear magnetic resonance (NMR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). As determined by WAXD, the PA-6 showed higher amounts of gamma-phase when compared to other synthesis methods such as in situ polymerization. TEM pictures showed that the silica particles aggregated nevertheless, upon addition of 14% (w/w) silica the E-modulus increased from 2.7 to 3.9 GPa indicating that an effective mechanical coupling with the polymer was achieved. The behavior, illustrated with dynamic mechanical analysis (DMA) curves, indicated that in general when a filled system is compared to unfilled material, the values of the moduli (E' and E") increased and tan 6 decreased. Determination of molecular mass distribution of the samples by means of size exclusion chromatography (SEC) coupled to a refractive index (RI), viscosity (DV) and light scattering (LS) detector revealed that the addition of silica did not decrease the average molecular weight of the polymer matrix, which is of importance for composite applications. Copyright (C) 2004 John Wiley Sons, Ltd.</p

    The social lives of isolates (and small language families):The case of the Northwest Amazon

    Get PDF
    The Americas are home to patches of extraordinary linguistic (genealogical) diversity. These high-diversity areas are particularly unexpected given the recent population of the Americas. In this paper, we zoom in on one such area, the Northwest Amazon, and address the question of how the diversity in this area has persisted to the present. We contrast two hypotheses that claim opposite mechanisms for the maintenance of diversity: the isolation hypothesis suggests that isolation facilitates the preservation of diversity, while the integration hypothesis proposes that conscious identity preservation in combination with contact drives diversity maintenance. We test predictions for both hypotheses across four disciplines: biogeography, cultural anthropology, population genetics and linguistics. Our results show signs of both isolation and integration, but they mainly suggest considerable diversity in how groups of speakers have interacted with their surroundings

    Interpreting mismatches between linguistic and genetic patterns among speakers of Tanimuka (Eastern Tukanoan) and Yukuna (Arawakan)

    Get PDF
    Northwestern Amazonia is home to a great degree of linguistic diversity, and the human societies in that region are part of complex networks of interaction that predate the arrival of Europeans. This study investigates the population and language contact dynamics between two languages found within this region, Yukuna and Tanimuka, which belong to the Arawakan and Tukanoan language families, respectively. We use evidence from linguistics, ethnohistory, ethnography and population genetics to provide new insights into the contact dynamics between these and other human groups in NWA. Our results show that the interaction between these groups intensified in the last 500 years, to the point that it is difficult to differentiate between them genetically. However, this close interaction has led to more substantial contact-induced language changes in Tanimuka than in Yukuna, consistent with a scenario of language shift and asymmetrical power relations

    Recent geospatial dynamics of Terceira (Azores, Portugal) and the theoretical implications for the biogeography of active volcanic islands

    Get PDF
    Ongoing work shows that species richness patterns on volcanic oceanic islands are shaped by surface area changes driven by longer time scale (>1 ka) geological processes and natural sea level fluctuations. A key question is: what are the rates and magnitudes of the forces driving spatial changes on volcanic oceanic islands which in turn affect evolutionary and biogeographic processes? We quantified the rates of surface-area changes of a whole island resulting from both volcanogenic flows and sea level change over the last glacial-interglacial (GI) cycle (120 ka) for the volcanically active island of Terceira, (Azores, Macaronesia, Portugal). Volcanogenic activity led to incidental but long-lasting surface area expansions by the formation of a new volcanic cone and lava-deltas, whereas sea level changes led to both contractions and expansions of area. The total surface area of Terceira decreased by as much as 24% per time step due to changing sea levels and increased by 37% per time step due to volcanism per time step of 10 ka. However, while sea levels nearly continuously changed the total surface area, volcanic activity only impacted total surface area during two time steps over the past 120 ka. The surface area of the coastal and lowland region (here defined as area <300 m) was affected by sea level change (average change of 11% / 10 ka for 120–0 ka) and intra-volcanic change (average change of 17% / 10 ka for 120–0 ka). We discuss the biogeographic implications of the quantified dynamics, and we argue that surface area change is mainly driven by volcanic processes in the early stages of the island’s life cycle, while during the later stages, area change becomes increasingly affected by sea level dynamics. Both environmental processes may therefore affect biota differently during the life cycle of volcanic oceanic islands.S.J.N. received funding from the Portuguese National Funds, through Fundação para a Ciência e a Tecnologia (FCT), within the project UID/BIA/00329/2013 and the Research Fellowship PD/BD/114380/2016. S.P.A. acknowledges his research contract (IF/00465/2015) funded by the Portuguese Science Foundation (FCT). C.S.M. is benefiting from a PhD grant M3.1.a/F/100/2015 from FRCT/Açores 2020 by Fundo Regional para a Ciência e Tecnologia (FRCT). Financial support to R.A. was received from the Laboratory of Excellence ‘TULIP’ (PIA-10-LABX-41). This work was supported by FEDER funds through the Operational Programme for Competitiveness Factors – COMPETE and by National Funds through FCT under the UID/BIA/50027/2013, POCI-01-0145-FEDER-006821 and under DRCT-M1.1.a/005/Funcionamento-C-/2016 (CIBIO-A) project from FRCT. This work was also supported by FEDER funds (in 85%) and by funds of the Regional Government of the Azores (15%) through Programa Operacional Açores 2020, in the scope of the project “AZORESBIOPORTAL – PORBIOTA”: ACORES‑01‑0145-FEDER-000072.info:eu-repo/semantics/publishedVersio

    Comparative evaluation of INNO-LiPA HBV assay, direct DNA sequencing and subtractive PCR-RFLP for genotyping of clinical HBV isolates

    Get PDF
    Genotypes (A to H) of hepatitis B virus (HBV) influence liver disease progression and response to antiviral therapy in HBV-infected patients. Several methods have been developed for rapid genotyping of HBV strains. However, some of these methods may not be suitable for developing countries. The performance of INNO-LiPA HBV Genotyping assay (LiPA), direct DNA sequencing and subtractive PCR-RFLP of genotype-specific HBV genome regions were evaluated for accurately determining the HBV genotypes by analyzing sera (n = 80) samples from chronic HBV patients. Both, LiPA and DNA sequencing identified 63, 4 and 13 HBV strains as belonging to genotype D, genotype A and mixed genotype A and D, respectively. On the contrary, the PCR-RFLP-based method correctly identified all 4 genotype A but only 56 of 63 genotype D strains. Seven genotype D strains yielded indeterminate results. DNA sequence comparisons showed that a single nucleotide change in the target region generated an additional restriction site for Nla IV that compromised the accuracy of this method. Furthermore, all the mixed genotype A and D strains were identified only as genotype A strains. The data show that the PCR-RFLP-based method incorrectly identified some genotype D strains and failed to identify mixed genotype infections while LiPA and DNA sequencing yielded accurate results

    Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion

    Get PDF
    Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel- and cone-like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC-associated protein Tpr and its large coiled coil-forming domain. RNAi-mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub-compartment and delimiting heterochromatin distribution

    The social lives of isolates (and small language families): the case of the Northwest Amazon

    Get PDF
    The Americas are home to patches of extraordinary linguistic (genealogical) diversity. These high-diversity areas are particularly unexpected given the recent population of the Americas. In this paper, we zoom in on one such area, the Northwest Amazon, and address the question of how the diversity in this area has persisted to the present. We contrast two hypotheses that claim opposite mechanisms for the maintenance of diversity: the isolation hypothesis suggests that isolation facilitates the preservation of diversity, while the integration hypothesis proposes that conscious identity preservation in combination with contact drives diversity maintenance. We test predictions for both hypotheses across four disciplines: biogeography, cultural anthropology, population genetics and linguistics. Our results show signs of both isolation and integration, but they mainly suggest considerable diversity in how groups of speakers have interacted with their surroundings

    Hepatitis B Virus Impairs TLR9 Expression and Function in Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) play a key role in detecting pathogens by producing large amounts of type I interferon (IFN) by sensing the presence of viral infections through the Toll-Like Receptor (TLR) pathway. TLR9 is a sensor of viral and bacterial DNA motifs and activates the IRF7 transcription factor which leads to type I IFN secretion by pDCs. However, during chronic hepatitis B virus (HBV) infection, pDCs display an impaired ability to secrete IFN-α following ex vivo stimulation with TLR9 ligands. Here we highlight several strategies used by HBV to block IFN-α production through a specific impairment of the TLR9 signaling. Our results show that HBV particle internalisation could inhibit TLR9- but not TLR7-mediated secretion of IFN-α by pDCs. We observed that HBV down-regulated TLR9 transcriptional activity in pDCs and B cells in which TLR9 mRNA and protein levels were reduced. HBV can interfere with TLR9 activity by blocking the MyD88-IRAK4 axis and Sendai virus targeting IRF7 to block IFN-α production. Neutralising CpG motif sequences were identified within HBV DNA genome of genotypes A to H which displayed a suppressive effect on TLR9-immune activation. Moreover, TLR9 mRNA and protein were downregulated in PBMCs from patients with HBV-associated chronic hepatitis and hepatocellular carcinoma. Thus HBV has developed several escape mechanisms to avoid TLR9 activation in both pDCs and B lymphocytes, which may in turn contribute to the establishment and/or persistence of chronic infection

    Genotyping the hepatitis B virus with a fragment of the HBV DNA polymerase gene in Shenyang, China

    Get PDF
    The hepatitis B virus (HBV) has been classified into eight genotypes (A-H) based on intergenotypic divergence of at least 8% in the complete nucleotide sequence or more than 4% in the S gene. To facilitate the investigation of the relationship between the efficacy of drug treatment and the mutation with specific genotype of HBV, we have established a new genotyping strategy based on a fragment of the HBV DNA polymerase gene. Pairwise sequence and phylogenetic analyses were performed using CLUSTAL V (DNASTAR) on the eight (A-H) standard full-length nucleotide sequences of HBV DNA from GenBank (NCBI) and the corresponding semi-nested PCR products from the HBV DNA polymerase gene. The differences in the semi-nested PCR fragments of the polymerase genes among genotypes A through F were greater than 4%, which is consistent with the intergenotypic divergence of at least 4% in HBV DNA S gene sequences. Genotyping using the semi-nested PCR products of the DNA polymerase genes revealed that only genotypes B, C, and D were present in the 50 cases, from Shenyang, China, with a distribution of 11 cases (22%), 25 cases (50%), and 14 cases (28%) respectively. These results demonstrate that our new genotyping method utilizing a fragment of the HBV DNA polymerase gene is valid and can be employed as a general genotyping strategy in areas with prevalent HBV genotypes A through F. In Shenyang, China, genotypes C, B, and D were identified with this new genotyping method, and genotype C was demonstrated to be the dominant genotype
    corecore