19,086 research outputs found
Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder
The failure probabilities or the strength distributions of heterogeneous 1D
systems with continuous local strength distribution and local load sharing have
been studied using a simple, exact, recursive method. The fracture behavior
depends on the local bond-strength distribution, the system size, and the
applied stress, and crossovers occur as system size or stress changes. In the
brittle region, systems with continuous disorders have a failure probability of
the modified-Gumbel form, similar to that for systems with percolation
disorder. The modified-Gumbel form is of special significance in weak-stress
situations. This new recursive method has also been generalized to calculate
exactly the failure probabilities under various boundary conditions, thereby
illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure
Optical Control of Topological Quantum Transport in Semiconductors
Intense coherent laser radiation red-detuned from absorption edge can
reactively activate sizable Hall type charge and spin transport in n-doped
paramagnetic semiconductors as a consequence of k-space Berry curvature
transferred from valence band to photon-dressed conduction band. In the
presence of disorder, the optically induced Hall conductance can change sign
with laser intensity.Comment: to appear in Phys. Rev. Let
Quantization and Corrections of Adiabatic Particle Transport in a Periodic Ratchet Potential
We study the transport of an overdamped particle adiabatically driven by an
asymmetric potential which is periodic in both space and time. We develop an
adiabatic perturbation theory after transforming the Fokker-Planck equation
into a time-dependent hermitian problem, and reveal an analogy with quantum
adiabatic particle transport. An analytical expression is obtained for the
ensemble average of the particle velocity in terms of the Berry phase of the
Bloch states. Its time average is shown to be quantized as a Chern number in
the deterministic or tight-binding limit, with exponentially small corrections.
In the opposite limit, where the thermal energy dominates the ratchet
potential, a formula for the average velocity is also obtained, showing a
second order dependence on the potential.Comment: 8 page
Carrier-envelope phase dependence in single-cycle laser pulse propagation with the inclusion of counter-rotating terms
We focus on the propagation properties of a single-cycle laser pulse through
a two-level medium by numerically solving the full-wave Maxwell-Bloch
equations. The counter-rotating terms in the spontaneous emission damping are
included such that the equations of motion are slightly different from the
conventional Bloch equations. The counter-rotating terms can considerably
suppress the broadening of the pulse envelope and the decrease of the group
velocity rooted from dispersion. Furthermore, for incident single-cycle pulses
with envelope area 4, the time-delay of the generated soliton pulse from
the main pulse depends crucially on the carrier-envelope phase of the incident
pulse. This can be utilized to determine the carrier-envelope phase of the
single-cycle laser pulse.Comment: 6 pages, 5 figure
Berry phase effect in anomalous thermoelectric transport
We develop a theory of Berry phase effect in anomalous transport in
ferromagnets driven by statistical forces such as the gradient of temperature
or chemical potential. Here a charge Hall current arises from the Berry phase
correction to the orbital magnetization rather than from the anomalous velocity
which does not exist in the absence of a mechanical force. A finite-temperature
formula for the orbital magnetization is derived, which enables us to provide
an explicit expression for the off-diagonal thermoelectric conductivity, to
establish the Mott relation between the anomalous Nernst and Hall effects, and
to reaffirm the Onsager relations between reciprocal thermoelectric
conductivities. A first-principles evaluation of our expression is carried out
for the material CuCrSeBr, obtaining quantitative agreement
with a recent experiment.Comment: Published version in PR
Derivation of the transverse force on a moving vortex in a superfluid
We describe an exact derivation of the total nondissipative transverse force
acting on a quantized vortex moving in a uniform background. The derivation is
valid for neutral boson or fermion superfluids, provided the order parameter is
a complex scalar quantity. The force is determined by the one-particle density
matrix far away from the vortex core, and is found to be the Magnus force
proportional to the superfluid density.Comment: Latex, 6 page
Possible discovery of the r-process characteristics in the abundances of metal-rich barium stars
We study the abundance distributions of a sample of metal-rich barium stars
provided by Pereira et al. (2011) to investigate the s- and r-process
nucleosynthesis in the metal-rich environment. We compared the theoretical
results predicted by a parametric model with the observed abundances of the
metal-rich barium stars. We found that six barium stars have a significant
r-process characteristic, and we divided the barium stars into two groups: the
r-rich barium stars (, [La/Nd]\,) and normal barium stars. The
behavior of the r-rich barium stars seems more like that of the metal-poor
r-rich and CEMP-r/s stars. We suggest that the most possible formation
mechanism for these stars is the s-process pollution, although their abundance
patterns can be fitted very well when the pre-enrichment hypothesis is
included. The fact that we can not explain them well using the s-process
nucleosynthesis alone may be due to our incomplete knowledge on the production
of Nd, Eu, and other relevant elements by the s-process in metal-rich and super
metal-rich environments (see details in Pereira et al. 2011).Comment: 5 pages, 5 figures, accepted for publication in A&
- …
