73 research outputs found

    New insights into the activation and deactivation of Au/CeZrO4 in the low-temperature water-gas shift reaction

    Get PDF
    Gold (Au) on ceria–zirconia is one of the most active catalysts for the low-temperature water–gas shift reaction (LTS), a key stage of upgrading H2 reformate streams for fuel cells. However, this catalyst rapidly deactivates on-stream and the deactivation mechanism remains unclear. Using stop–start scanning transmission electron microscopy to follow the exact same area of the sample at different stages of the LTS reaction, as well as complementary X-ray photoelectron spectroscopy, we observed the activation and deactivation of the catalyst at various stages. During the heating of the catalyst to reaction temperature, we observed the formation of small Au nanoparticles (NPs; 1–2 nm) from subnanometer Au species. These NPs were then seen to agglomerate further over 48 h on-stream, and most rapidly in the first 5 h when the highest rate of deactivation was observed. These findings suggest that the primary deactivation process consists of the loss of active sites through the agglomeration and possible dewetting of Au NPs

    Comparative Genomics of Emerging Human Ehrlichiosis Agents

    Get PDF
    Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens

    Flow Pattern, Pressure Drop, and Mass Transfer in a Gas-Liquid Concurrent Two-Phase Flow Microchannel Reactor

    No full text
    Flow pattern, pressure drop, and mass transfer characteristics have been studied for the gas-liquid two-phase flow in a 1.0 mm inner diameter circular microchannel reactor. A mixture Of CO(2), N(2), and polyethylene glycol dimethyl ether was used to represent the gas and liquid phases, respectively. Bubbly, slug, churn, and slug-annular flow patterns were observed in the present work. A flow pattern map using superficial gas and liquid velocities as coordinates has been developed and compared to the existing flow pattern maps for similar to 1 mm diameter channels. The data obtained for the pressure drop of the two-phase flow were analyzed and compared with the homogeneous model and the separate flow model to assess their predictive capabilities. The liquid side volumetric mass transfer coefficient increased with an increase of the superficial gas and liquid velocities, and the influences of the superficial gas and liquid velocities on it were demonstrated. The liquid side mass transfer coefficient, which was as high as 3.34 s(-1), was 1 or 2 orders of magnitude higher than the traditional industrial gas-liquid contactors

    Open Field Simulating Nocturnal Warming on Summer Maize Performance in the North China Plain

    No full text
    Climate changes show asymmetrical warming, and warming is typically greater at night than during the day. To understand how nocturnal warming (NW) affects the performance of maize (Zea mays L.), an open-field experiment with a free air temperature increase (FATI) facility was conducted for three seasons during 2014 to 2016 at Luancheng eco-agro-experimental station on the North China Plain (NCP). Three nocturnal warming scenarios were set up: the entire growing period (T1, from V4 to maturity), only the vegetative stages (T2, from V4 to a week presilking) and the reproductive stages (T3, from a week presilking to R6). The treatment without NW was the control. Maize lodged seriously in 2015 due to heavy rainfall combined with strong winds, and the experiment failed. The results from 2014 and 2016 were analyzed in this study. During the experimental duration, the average nocturnal temperature was increased by approximately 3.6 and 3.3 °C at 150 cm height and 2.0 and 1.7 °C at the soil surface during the vegetative stages. The corresponding increases were 2.1 and 2.5 °C and 0.7 and 1.2 °C at the soil surface during the reproductive stages in 2014 and 2016, respectively, as compared with that of the CK treatment. NW during the whole growth period significantly decreased maize yield for the two seasons. Treatment T2 had a smaller impact on maize yield than T1 and T3. The silking stage was delayed by 2 days in 2014 and 2016 under T1. As a result, presilking duration and VT-R1 interval were prolonged by 1–2 days; and the postsilking duration were shortened by 1–3 days under T1. The soil moisture in the warmed plots was slightly lower than that in the control plots in the 2014 and during the stages before the earlier grain-filling stages in 2016, but NW decreased soil water content greatly at the later grain-filling stages in 2016, which caused the fast green leaf senescence and exacerbated the negative effects of NW on maize yield. NW for the whole growth duration (T1) significantly decreased seed weight and harvest index. NW increased leaf nighttime respiration rate in both seasons. No significant effects of NW on ear leaf net photosynthesis, leaf area, and specific leaf weight at early grain-filling stage were observed, irrespective of the warming stage and season. The results suggested that reproductive stages were more sensitive to NW compared to vegetative stages under the growing conditions of NCP. The negative effects of NW were worsened in dry seasons. The reduction in maize yield with nocturnal warming was driven by the reduction in the aboveground carbon allocation from shoot to grain during postanthesis stage