4,695 research outputs found

    Numerical Analysis of a Bidirectional Synthetic Jet for Active Flow Control

    Get PDF

    Numerical Latent Heat Observation of the q=5 Potts Model

    Full text link
    Site energy of the five-state ferromagnetic Potts model is numerically calculated at the first-order transition temperature using corner transfer matrix renormalization group (CTMRG) method. The calculated energy of the disordered phase U+U^{+} is clearly different from that of the ordered phase U−U^{-}. The obtained latent heat L=U−−U+L = U^{-} - U^{+} is 0.027, which quantitatively agrees with the exact solution.Comment: 2 pages, Latex(JPSJ style files are included), 2 ps figures, submitted to J. Phys. Soc. Jpn.(short note

    The Density Matrix Renormalization Group technique with periodic boundary conditions

    Full text link
    The Density Matrix Renormalization Group (DMRG) method with periodic boundary conditions is introduced for two dimensional classical spin models. It is shown that this method is more suitable for derivation of the properties of infinite 2D systems than the DMRG with open boundary conditions despite the latter describes much better strips of finite width. For calculation at criticality, phenomenological renormalization at finite strips is used together with a criterion for optimum strip width for a given order of approximation. For this width the critical temperature of 2D Ising model is estimated with seven-digit accuracy for not too large order of approximation. Similar precision is reached for critical indices. These results exceed the accuracy of similar calculations for DMRG with open boundary conditions by several orders of magnitude.Comment: REVTeX format contains 8 pages and 6 figures, submitted to Phys. Rev.

    Stochastic Light-Cone CTMRG: a new DMRG approach to stochastic models

    Full text link
    We develop a new variant of the recently introduced stochastic transfer-matrix DMRG which we call stochastic light-cone corner-transfer-matrix DMRG (LCTMRG). It is a numerical method to compute dynamic properties of one-dimensional stochastic processes. As suggested by its name, the LCTMRG is a modification of the corner-transfer-matrix DMRG (CTMRG), adjusted by an additional causality argument. As an example, two reaction-diffusion models, the diffusion-annihilation process and the branch-fusion process, are studied and compared to exact data and Monte-Carlo simulations to estimate the capability and accuracy of the new method. The number of possible Trotter steps of more than 10^5 shows a considerable improvement to the old stochastic TMRG algorithm.Comment: 15 pages, uses IOP styl

    Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group

    Full text link
    We report a way of obtaining a spin configuration snapshot, which is one of the representative spin configurations in canonical ensemble, in a finite area of infinite size two-dimensional (2D) classical lattice models. The corner transfer matrix renormalization group (CTMRG), a variant of the density matrix renormalization group (DMRG), is used for the numerical calculation. The matrix product structure of the variational state in CTMRG makes it possible to stochastically fix spins each by each according to the conditional probability with respect to its environment.Comment: 4 pages, 8figure

    Performance of an ideal turbine in an inviscid shear flow

    Get PDF
    Although wind and tidal turbines operate in turbulent shear flow, most theoretical results concerning turbine performance, such as the well-known Betz limit, assume the upstream velocity profile is uniform. To improve on these existing results we extend the classical actuator disc model in this paper to investigate the performance of an ideal turbine in steady, inviscid shear flow. The model is developed on the assumption that there is negligible lateral interaction in the flow passing through the disc and that the actuator applies a uniform resistance across its area. With these assumptions, solution of the model leads to two key results. First, for laterally unbounded shear flow, it is shown that the normalised power extracted is the same as that for an ideal turbine in uniform flow, if the average of the cube of the upstream velocity of the fluid passing through the turbine is used in the normalisation. Second, for a laterally bounded shear flow, it is shown that the same normalisation can be applied, but allowance must also be made for the fact that non-uniform flow bypassing the turbine alters the background pressure gradient and, in turn, the turbines ‘effective blockage’ (so that it may be greater or less than the geometric blockage, defined as the ratio of turbine disc area to cross-sectional area of the flow). Predictions based on the extended model agree well with numerical simulations approximating the incompressible Euler equations. The model may be used to improve interpretation of model-scale results for wind and tidal turbines in tunnels/flumes, to investigate the variation in force across a turbine and to update existing theoretical models of arrays of tidal turbines

    Incommensurate structures studied by a modified Density Matrix Renormalization Group Method

    Full text link
    A modified density matrix renormalization group (DMRG) method is introduced and applied to classical two-dimensional models: the anisotropic triangular nearest- neighbor Ising (ATNNI) model and the anisotropic triangular next-nearest-neighbor Ising (ANNNI) model. Phase diagrams of both models have complex structures and exhibit incommensurate phases. It was found that the incommensurate phase completely separates the disordered phase from one of the commensurate phases, i. e. the non-existence of the Lifshitz point in phase diagrams of both models was confirmed.Comment: 14 pages, 14 figures included in text, LaTeX2e, submitted to PRB, presented at MECO'24 1999 (Wittenberg, Germany

    Flat-Bands on Partial Line Graphs -- Systematic Method for Generating Flat-Band Lattice Structures

    Full text link
    We introduce a systematic method for constructing a class of lattice structures that we call ``partial line graphs''.In tight-binding models on partial line graphs, energy bands with flat energy dispersions emerge.This method can be applied to two- and three-dimensional systems. We show examples of partial line graphs of square and cubic lattices. The method is useful in providing a guideline for synthesizing materials with flat energy bands, since the tight-binding models on the partial line graphs provide us a large room for modification, maintaining the flat energy dispersions.Comment: 9 pages, 4 figure
    • …
    corecore