2 research outputs found

    Redox Switching Behavior in Resistive Memory Device Designed Using a Solution-Processable Phenalenyl-Based Co(II) Complex: Experimental and DFT Studies

    No full text
    We herein report a novel square-planar complex [CoIIL], which was synthesized using the electronically interesting phenalenyl-derived ligand LH2 = 9,9′-(ethane-1,2-diylbis­(azanediyl))­bis­(1H-phenalen-1-one). The molecular structure of the complex is confirmed with the help of the single-crystal X-ray diffraction technique. [CoIIL] is a mononuclear complex where the Co­(II) ion is present in the square-planar geometry coordinated by the chelating bis-phenalenone ligand. The solid-state packing of [CoIIL] complex in a crystal structure has been explained with the help of supramolecular studies, which revealed that the π···π stacking present in the [CoIIL] complex is analogous to the one present in tetrathiafulvalene/tetracyanoquinodimethane charge transfer salt, well-known materials for their unique charge carrier interfaces. The [CoIIL] complex was employed as the active material to fabricate a resistive switching memory device, indium tin oxide/CoIIL/Al, and characterized using the write-read-erase-read cycle. The device has interestingly shown a stable and reproducible switching between two different resistance states for more than 2000 s. Observed bistable resistive states of the device have been explained by corroborating the electrochemical characterizations and density functional theory studies, where the role of the CoII metal center and π-conjugated phenalenyl backbone in the redox-resistive switching mechanism is proposed

    Designing a Redox Noninnocent Phenalenyl-Based Copper(II) Complex: An Autotandem Catalyst for the Selective Oxidation of Polycyclic Aromatic Hydrocarbons (PAHs)

    No full text
    A square-planar [CuIIL] complex 1, based on the redox-active phenalenyl unit LH2 = 9,9′-(ethane-1,2-diylbis­(azanediyl))­bis­(1H-phenalen-1-one), is prepared and structurally characterized by single-crystal X-ray diffraction analysis. Complex 1 crystallizes at room temperature with the P1 space group. The molecular structure of 1 reveals the presence of intriguing C–H···Cu intermolecular anagostic interactions of the order ∼2.7715 Å. Utilizing the presence of anagostic interactions and the free nonbonding molecular orbitals (NBMOs) of the closed-shell phenalenyl unit in 1, the oxidation reactions of some industrially important polycyclic aromatic hydrocarbons (PAHs) in the presence of the [CuIIL] complex under very mild conditions have been reported. The direct conversion of anthracene-9-carbaldehyde to 9,10-anthraquinone in one step concludes that the catalyst shows dual activity in the chemical transformations. This also includes the first report of a “single-step” catalytic transformation of pyrene-1-carbaldehyde to the synthetically difficult pyren-4-ol, a precursor for the synthesis of several novel fluorescent probes for cell imaging
    corecore