56 research outputs found

    A Combined Wave Function and Density Functional Approach for K‑Edge X‑ray Absorption Near-Edge Spectroscopy: A Case Study of Hydrated First-Row Transition Metal Ions

    No full text
    The prediction of X-ray absorption spectra (XAS) of transition metal complexes has important and broad application areas in chemistry and biology. In this letter, we have investigated the predictive ability of multiconfiguration pair-density functional theory (MC-PDFT) for X-ray absorption spectra by calculating the metal K pre-edge features of aquated 3d transition metal ions in common oxidation states. MC-PDFT results were compared with experimentally measured spectra as well as analyzed against results from restricted active-space second-order perturbation theory (RASPT2) and time-dependent density functional theory (TDDFT). As expected, TDDFT performs well for excited states that can be accurately represented by singly excited configurations but fails for excited states where higher order excitations become important. On the other hand, both RASPT2 and MC-PDFT provide quantitatively accurate results for all excited states irrespective of their character. While core-level spectroscopy with RASPT2 is accurate, it is computationally expensive. Our results show that MC-PDFT performs equally well with significantly lower computational cost and is an encouraging alternate approach for X-ray spectroscopies

    Scalar Relativistic Computations of Nuclear Magnetic Shielding and <i>g</i>-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals

    No full text
    Density functional theory (DFT) calculations of NMR chemical shifts and molecular g tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X = F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po) and 125Te chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting 19F NMR shielding in UF6–nCln, n = 1–6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs correlation. For the uranium halides, the range-separated functionals are not clearly superior to global hybrids

    Evidence of Skewness and Sub-Gaussian Character in Temperature-Dependent Distributions of One Million Electronic Excitation Energies in PbS Quantum Dots

    No full text
    Obtaining statistical distributions by sampling a large number of conformations is vital for an accurate description of temperature-dependent properties of chemical systems. However, constructing distributions with 105–106 samples is computationally challenging because of the prohibitively high computational cost of performing first-principles quantum mechanical calculations. In this work, we present a new technique called the effective stochastic potential configuration interaction singles (ESP-CIS) method to obtain excitation energies. The ESP-CIS method uses random matrix theory for the construction of an effective stochastic representation of the Fock operator and combines it with the CIS method. Excited-state energies of PbS quantum dots (0.75–1.75 nm) at temperatures of 10–400 K were calculated using the ESP-CIS method. Results from a total of 27 million excitation energy calculations revealed the distributions to be sub-Gaussian in nature with negative skewness, which progressively became red-shifted with increasing temperature. This study demonstrates the efficacy of the ESP-CIS method as a general-purpose method for efficient excited-state calculations

    Monitoring Long-Range Electron Transfer Pathways in Proteins by Stimulated Attosecond Broadband X‑ray Raman Spectroscopy

    No full text
    Long-range electron transfer (ET) is a crucial step in many energy conversion processes and biological redox reactions in living organisms. We show that newly developed X-ray pulses can directly probe the evolving oxidation states and the electronic structure around selected atoms with detail not available through conventional time-resolved infrared or optical techniques. This is demonstrated in a simulation study of the stimulated X-ray Raman (SXRS) signals in Re-modified azurin, which serves as a benchmark system for photoinduced ET in proteins. Nonlinear SXRS signals offer a direct novel window into the long-range ET mechanism

    Basis Set Selection for Molecular Core-Level <i>GW</i> Calculations

    No full text
    The GW approximation has been recently gaining popularity among the methods for simulating molecular core-level X-ray photoemission spectra. Traditionally, Gaussian-type orbital GW core-level binding energies have been computed using either the cc-pVnZ or def2-nZVP basis set families, extrapolating the obtained results to the complete basis set limit, followed by an element-specific relativistic correction. Despite achieving rather good accuracy, it has been previously stated that these binding energies are chronically underestimated. In the present work, we show that those previous studies obtained results that were not well-converged with respect to the basis set size and that, once basis set convergence is achieved, there seems to be no such underestimation. Standard techniques known to offer a good cost-accuracy ratio in other theories demonstrate that the cc-pVnZ and def2-nZVP families exhibit contraction errors and might lead to unreliable complete basis set extrapolations for absolute binding energies, often deviating about 200–500 meV from the putative basis set limit found in this work. On the other hand, uncontracted versions of these basis sets offer vastly improved convergence. Even faster convergence can be obtained using core-rich property-optimized basis set families like pcSseg-n, pcJ-n, and ccX-nZ. Finally, we also show that the improvement observed for core properties using these specialized basis sets does not degrade their description of valence excitations: vertical ionization potentials and electron affinities computed with these basis sets converge as fast as the ones obtained with the aug-cc-pVnZ family, thus offering a balanced description of both core and valence regions

    Simulating Valence-to-Core X‑ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory

    No full text
    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal–ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment

    Optimal Tuning Perspective of Range-Separated Double Hybrid Functionals

    No full text
    We study the optimal tuning of the free parameters in range-separated double hybrid functionals, based on enforcing the exact conditions of piecewise linearity and spin constancy. We find that introducing the range separation in both the exchange and the correlation terms allows for the minimization of both fractional charge and fractional spin errors for singlet atoms. The optimal set of parameters is system specific, underlining the importance of the tuning procedure. We test the performance of the resulting optimally tuned functionals for the dissociation curves of diatomic molecules. We find that they recover the correct dissociation curve for the one-electron system, H2+, and improve the dissociation curves of many-electron molecules such as H2 and Li2, but they also yield a nonphysical maximum and only converge to the correct dissociation limit at very large distances

    Scalable Molecular GW Calculations: Valence and Core Spectra

    No full text
    We present a scalable implementation of the GW approximation using Gaussian atomic orbitals to study the valence and core ionization spectroscopies of molecules. The implementation of the standard spectral decomposition approach to the screened-Coulomb interaction, as well as a contour-deformation method, is described. We have implemented both of these approaches using the robust variational fitting approximation to the four-center electron repulsion integrals. We have utilized the MINRES solver with the contour-deformation approach to reduce the computational scaling by 1 order of magnitude. A complex heuristic in the quasiparticle equation solver further allows a speed-up of the computation of core and semicore ionization energies. Benchmark tests using the GW100 and CORE65 data sets and the carbon 1s binding energy of the well-studied ethyl trifluoroacetate, or ESCA molecule, were performed to validate the accuracy of our implementation. We also demonstrate and discuss the parallel performance and computational scaling of our implementation using a range of water clusters of increasing size

    Resonant X‑ray Sum-Frequency-Generation Spectroscopy of K‑Edges in Acetyl Fluoride

    No full text
    Resonant X-ray sum-frequency generation is calculated for excitations of the fluorine and the oxygen core K-edge in acetyl fluoride using real-time time-dependent density functional theory. The signal is generated by an extreme-ultraviolet pulse followed by an X-ray pulse with variable delay T. The X-ray pulse is tuned to different element-specific core excitations and used to probe the dynamics of a valence electronic wave packet. A two-dimensional signal is recorded depending on the dispersed X-ray pulse frequency and the frequency conjugated to T, revealing the couplings between core and valence excited states. Molecular orbital decomposition of the signal reveals which regions of the molecule contribute to the X-ray excitation

    Spectral Signatures of Ultrafast Excited-State Intramolecular Proton Transfer from Computational Multi-edge Transient X‑ray Absorption Spectroscopy

    No full text
    Excited-state intramolecular proton transfer (ESIPT) is a fundamental chemical process with several applications. Ultrafast ESIPT involves coupled electronic and atomic motions and has been primarily studied using femtosecond optical spectroscopy. X-ray spectroscopy is particularly useful because it is element-specific and enables direct, individual probes of the proton-donating and -accepting atoms. Herein, we report a computational study to resolve the ESIPT in 10-hydroxybenzo­[h]­quinoline (HBQ), an intramolecularly hydrogen bonded compound. We use linear-response time-dependent density functional theory (LR-TDDFT) combined with ab initio molecular dynamics (AIMD) and time-resolved X-ray absorption spectroscopy (XAS) computations to track the ultrafast excited-state dynamics. Our results reveal clear X-ray spectral signatures of coupled electronic and atomic motions during and following ESIPT at the oxygen and nitrogen K-edge, paving the way for future experiments at X-ray free electron lasers
    corecore