20 research outputs found

    Size matters: An observational study investigating estimated height as a reference size for calculating tidal volumes if low tidal volume ventilation is required

    No full text
    <div><p>Purpose</p><p>Acute lung injury is a life threatening condition often requiring mechanical ventilation. Lung-protective ventilation with tidal volumes of 6 mL/kg predicted body weight (PBW, calculated on the basis of a patient’s sex and height), is part of current recommended ventilation strategy. Hence, an exact height is necessary to provide optimal mechanical ventilation. However, it is a common practice to visually estimate the body height of mechanically ventilated patients and use these estimates as a reference size for ventilator settings. We aimed to determine if the common practice of estimating visual height to define tidal volume reduces the possibility of receiving lung-protective ventilation.</p><p>Methods</p><p>In this prospective observational study, 28 mechanically ventilated patients had their heights visually estimated by 20 nurses and 20 physicians. All medical professionals calculated the PBW and a corresponding tidal volume with 6 ml/kg/PBW on the basis of their visual estimation. The patients’ true heights were measured and the true PBW with a corresponding tidal volume was calculated. Finally, estimates and measurements were compared.</p><p>Results</p><p>1033 estimations were undertaken by 153 medical professionals. The majority of the estimates were imprecise and resulting data comprised taller body heights, higher PBW and higher tidal volumes (all p≤0.01). When estimates of patients´ heights are used as a reference for tidal-volume definition, patients are exposed to mean tidal volumes of 6.5 ± 0.4 ml/kg/PBW. 526 estimation-based tidal volumes (51.1%) did not provide lung-protective ventilation. Shorter subjects (<175cm) were a specific risk group with an increased risk of not receiving lung protective ventilation (OR 6.6; 95%CI 1.2–35.4; p = 0.02), while taller subjects had a smaller risk of being exposed to inadequately high tidal volumes (OR 0.15; 95%CI 0.02–0.8; p = 0.02). Furthermore, we found an increased risk of overestimating if the assessor was a female (OR 1.74; 95%CI 1.14–2.65; p = 0.01).</p><p>Conclusion</p><p>The common practice of visually estimating body height and using these estimates for ventilator settings is imprecise and potentially harmful because it reduces the chance of receiving lung-protective ventilation. Avoiding this practice increases the patient safety. Instead, height should be measured as a standard procedure.</p></div

    Modified Bland–Altman plot: Each dot represents an estimate of body height.

    No full text
    <p>Differences between measured and estimated height (y-axis) are plotted against the true height (x-axis).</p

    Representative multi-capillary column/ion mobility spectra (MCC/IMS) of breath samples.

    No full text
    <p>Breath sample of (A) a healthy adult, (B) an end-stage renal disease proband before and (C) after hemodialysis treatment. Areas of interest are marked and labeled by numbers. Substances corresponding to these numbers are given in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046258#pone-0046258-t002" target="_blank">Table 2</a>. Signal intensity is coded by colours (yellow: very high; red high, blue: moderate, white: no signal).</p

    Scheme of an ion mobility spectrometer (MCC/IMS).

    No full text
    <p>The multi-capillary column (MCC) provides a preseparation of the molecules in the gas phase. In the ionization chamber proton transfer from the reactant ions to the analyte molecules takes place, thus forming protonated analyte ions. The drift time of the ions in the electric field depends on size and shape of the analytes. The retention time in the MCC and mobility in the IMS characterize the identity of the analyte. The intensity of the signal is a measure of the analyte's concentration.</p

    Signal intensities of exemplary analytes that accumulate during hemodialysis.

    No full text
    <p>Signal intensities of analytes P9 and P11 in 28 healthy controls, 26 patients with chronic renal failure (CRF) stage 2–4 according to K/DOQI-criteria, 28 patients with end-stage renal disease (ESRD, CRF stage 5D) prior to and 22 after hemodialysis. Signal intensities were tested for statistical significance by two-tailed t-tests; *p<0.05, **p<0.01, ***p<0.001.</p