56 research outputs found

    Kombucha–proteinoid crystal bioelectric circuits

    Get PDF
    We propose “kombucha–proteinoid crystal bioelectric circuits” as a sustainable bio-computing platform. These circuits are hybrid biological-inorganic devices that utilize crystal growth dynamics as the physical substrate to convert information. Microfluidic prototypes couple custom-synthesized thermal proteinoids within kombucha cellulose matrices and metastable calcium carbonate solutions. This bio-mineral configuration examines if precision modulation of crystal growth rates could instantiate reconfigurable logic gates for unconventional computing applications. Programming organic acid secretions allows for the adjustment of biotic-mineral polarity, thereby establishing microbial-synthetic pairings that consistently regulate the crystal growth rate of calcite deposition. By coordinating intrinsic physicochemical phenomena, accrued mineral densities literally crystallize additive/multiplicative operations via Boolean AND/OR logics. An additional way to generate structured logics similar of neural assemblies is by chaining modular crystallizer units. Proteinoid-guided carbonate crystallization may prove to be a viable material platform for unconventional computing-green, self-organizing, scalable architectures grown directly from solution-pending definitive affirmation of proof-of-concept

    On emergence of spontaneous oscillations in kombucha and proteinoids

    Get PDF
    An important part of studying living systems is figuring out the complicated steps that lead to order from chaos. Spontaneous oscillations are a key part of self-organisation in many biological and chemical networks, including kombucha and proteinoids. This study examines the spontaneous oscillations in kombucha and proteinoids, specifically exploring their potential connection to the origin of life. As a community of bacteria and yeast work together, kombucha shows remarkable spontaneous oscillations in its biochemical parts. This system can keep a dynamic balance and organise itself thanks to metabolic processes and complex chemical reactions. Similarly, proteinoids, which may have been primitive forms of proteins, undergo spontaneous fluctuations in their structure and function periodically. Because these oscillations happen on their own, they may play a very important part in the development of early life forms. This paper highlights the fundamental principles governing the transition from chaos to order in living systems by examining the key factors that influence the frequency and characteristics of spontaneous oscillations in kombucha and proteinoids. Looking into these rhythms not only helps us understand where life came from but also shows us ways to make self-organising networks in synthetic biology and biotechnology. There is significant discussion over the emergence of biological order from chemical disorder. This article contributes to the ongoing discussion by examining at the theoretical basis, experimental proof, and implications of spontaneous oscillations. The results make it clear that random oscillations are an important part of the change from nonliving to living matter. They also give us important information about what life is all about

    Light-induced spiking response in proteinoid-actin-kombucha system

    Get PDF
    This study examines the spiking response of a proteinoid–actin–kombucha system when exposed to varying frequency of yellow light pulses. The objective is to understand the frequency-dependent characteristics of this system's response and explore the possibility of using light pulses to regulate and manipulate how it functions. The kombucha samples, which contained proteinoid–actin complexes, were exposed to several stimulation conditions. These settings included no light (blank) and yellow light pulses at frequencies of 2 Hz, 4 Hz, 10 Hz, 20 Hz, and 100 Hz. The spiking response was analyzed in terms of potential (mV) over time (s), and the characteristics of the response, such as amplitude and period, were examined. The findings indicate that the spiking patterns and characteristics fluctuate according on the stimulation frequency, with higher frequencies generally leading to more distinct and numerous spikes compared to lower frequencies and the absence of stimulation. The skewness and kurtosis values of the potential data indicate different levels of asymmetry and tail tendency in the probability distributions, which further supports the fact that the response is based on frequency. The study emphasises the capacity to manipulate and regulate the functions of the proteinoid–actin–kombucha system using light pulses, hence creating opportunities for future usage in several domains, including biosensors and biocomputing

    Proteinoids–polyaniline interaction with stimulated neurons on living and plastic surfaces

    Get PDF
    The integration of proteinoid-polyaniline (PANI) nanofibers with neuromorphic architectures shows potential for developing computer systems that are adaptable, energy-efficient, and have the capacity of tolerating faults. This work examines the capacity of proteinoid-PANI nanofibers to imitate different spiking patterns in stimulated Izhikevich neurons. The proteinoid-PANI nanofibers exhibit diverse spiking behaviors on different substrates, showcasing a broad range of control and programmability, as confirmed by experimental characterization and computational modeling. K-means clustering technique measures the extent and selectivity of the proteinoid-PANI spiking behavior in response to various stimuli and spiking patterns. The presence of strong positive correlations between membrane potential and time suggests that the system is capable of producing reliable and consistent electrical activity patterns. Proteinoid-PANI samples demonstrate enhanced stability and consistency in numerous spiking modes when compared to simulated input neurons. The results emphasize the capability of proteinoid-PANI nanofibers as a bioinspired substance for neuromorphic computing and open up possibilities for their incorporation into neuromorphic structures and bioinspired computer models

    Kombucha-chlorella-proteinoid biosynthetic classifiers of audio signals

    Get PDF
    This paper describes the development of a bioinspired composite material capable of audio classification applications. Hydrogel matrices produced by microorganisms combined with synthetic biology elements, allow for the development of adaptable bioelectronics that connect biology and technology in a customized way. In this study, a composite population of kombucha, chlorella, and proteinoids (thermal proteins) is utilized to respond to acoustic signals converted to electrical waveforms. The kombucha zoogleal mats, which are made and populated by over 60 species of yeasts and bacteria, offer a matrix at the micro level that is connected to the photosynthetic microalgae chlorella. Proteinoids formed through thermal condensation exhibit unique patterns of signaling kinetics. This living material has the ability to be electrically stimulated and can process signals in a way feasible for sensory applications. Using English alphabet audio inputs, a systematic analysis demonstrates the capability to differentiate audio waveforms based solely on biological composite responses. The use of spectral analysis allows for the identification of specific spike timing patterns that encode unique characteristics of individual letters. Moreover, network disturbances result in specific changes in output, so validating the ability to adjust waveform classification. The study demonstrates that kombucha-chlorella-proteinoid composites provide a durable and versatile bioelectronic platform for immediate auditory processing. The work represents progress toward the development of bioelectronic systems that can be customized based on the principles of biological sensory processing, cognition, and adaptation

    Living wearables from slime mould and fungi

    Get PDF
    Smart wearables, augmented with soft and liquid electronics, can display sensing, responsive and adaptive capabilities, but they cannot self-grow or self-repair. Living organisms colonising a fabric could be a viable alternative. In the present article we briefly review our ideas on implementing living wearables with slime mould and fungi. The living networks of slime mould protoplasmic tubes and fungal mycelium networks can act as distributed sensorial networks, fuse sensorial inputs from wearers and environment, process information in a massive parallel manner and provide responses in benefit of the consortium human-microbe

    Responsive fungal insoles for pressure detection

    Get PDF
    Mycelium bound composites are promising materials for a diverse range of applications including wearables and building elements. Their functionality surpasses some of the capabilities of traditionally passive materials, such as synthetic fibres, reconstituted cellulose fibres and natural fibres. Thereby, creating novel propositions including augmented functionality (sensory) and aesthetic (personal fashion). Biomaterials can offer multiple modal sensing capability such as mechanical loading (compressive and tensile) and moisture content. To assess the sensing potential of fungal insoles we undertook laboratory experiments on electrical response of bespoke insoles made from capillary matting colonised with oyster fungi Pleurotus ostreatus to compressive stress which mimics human loading when standing and walking. We have shown changes in electrical activity with compressive loading. The results advance the development of intelligent sensing insoles which are a building block towards more generic reactive fungal wearables. Using FitzHugh-Nagumo model we numerically illustrated how excitation wave-fronts behave in a mycelium network colonising an insole and shown that it may be possible to discern pressure points from the mycelium electrical activity

    Functionalizing the electrical properties of kombucha zoogleal mats for biosensing applications

    Get PDF
    Kombucha is a type of tea that is fermented using yeast and bacteria. During this process, a film made of cellulose is produced. This film has unique properties such as biodegradability, flexibility, shape conformability, and ability to self-grow, as well as be produced across customised scales. In our previous studies, we demonstrated that Kombucha mats exhibit electrical activity represented by spikes of the electrical potential. We propose using microbial fermentation as a method for in situ functionalisation to modulate the electroactive nature of Kombucha cellulose mats, where graphene and zeolite were used for the functionalisation. We subjected the pure and functionalised Kombucha mats to mechanical stimulation by applying different weights and geometries. Our experiments demonstrated that Kombucha mats functionalised with graphene and zeolite exhibit memfractive properties and respond to load by producing distinctive spiking patterns. Our findings present incredible opportunities for the in situ development of functionalised hybrid materials with sensing, computing, and memory capabilities. These materials can self-assemble and self-grow after fusing their living and synthetic components. This study contributes to an emergent area of research on bioelectronic sensing and hybrid living materials, opening up exciting opportunities for use in smart wearables, diagnostics, health monitoring and energy harvesting applications

    Primary glomangiosarcoma of the lung: A case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glomus tumor is an uncommon neoplasm derived from cells of the neuromyoarterial glomus or glomus body. Most glomus tumours occur in the dermis and subcutaneous tissues. A case of a primary pulmonary glomus tumour originating in the right upper lobe is presented.</p> <p>Case presentation</p> <p>A 74-yr-old male was admitted with siccus cough, dyspnea and right-sided chest pain. Computed tomography of the thorax revealed a 4 cm growth of the right upper lobe. Fiberoptic bronchoscopy demonstrated an endobronchial hypervascular mass causing obstruction of the apical segmental bronchus. Pathology report was consistent with pulmonary glomus tumor. The patient underwent a typical right upper lobectomy with mediastinal lymph node dissection. Twelve months later he is free of disease.</p> <p>Conclusion</p> <p>Occasionally glomus tumors can occur in extracutaneous sites such as the gastrointestinal tract, bone, genitourinary system and respiratory tract. Primary pulmonary glomus tumors are very rare (our case is the 19<sup>th </sup>one presented in the international literature) and are often confused with other solid neoplasms such as carcinoids, hemangiopericytomas and tumors belonging to the family of Ewing's sarcoma/primitive neuroectodermal tumours.</p

    Author correction: Kombucha electronics: Electronic circuits on kombucha mats

    Get PDF
    Correction to: Scientific Reports, published online 09 June 2023 The original version of this Article contained an error in the spelling of the author Pasquale D’Angelo which was incorrectly given as Passquale D’Angelo. The original Article has been corrected
    • …
    corecore