9 research outputs found

    Efficient Approximation of the Matching Distance for 2-Parameter Persistence

    Get PDF
    In topological data analysis, the matching distance is a computationally tractable metric on multi-filtered simplicial complexes. We design efficient algorithms for approximating the matching distance of two bi-filtered complexes to any desired precision ?>0. Our approach is based on a quad-tree refinement strategy introduced by Biasotti et al., but we recast their approach entirely in geometric terms. This point of view leads to several novel observations resulting in a practically faster algorithm. We demonstrate this speed-up by experimental comparison and provide our code in a public repository which provides the first efficient publicly available implementation of the matching distance

    Topological Optimization with Big Steps

    Full text link
    Using persistent homology to guide optimization has emerged as a novel application of topological data analysis. Existing methods treat persistence calculation as a black box and backpropagate gradients only onto the simplices involved in particular pairs. We show how the cycles and chains used in the persistence calculation can be used to prescribe gradients to larger subsets of the domain. In particular, we show that in a special case, which serves as a building block for general losses, the problem can be solved exactly in linear time. This relies on another contribution of this paper, which eliminates the need to examine a factorial number of permutations of simplices with the same value. We present empirical experiments that show the practical benefits of our algorithm: the number of steps required for the optimization is reduced by an order of magnitude.Comment: 10 pages, 10 figure

    Geometry Helps to Compare Persistence Diagrams

    Full text link
    Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a well-studied subject. In contrast, the practical advantages of using geometry for such problems have not been explored. We implement geometric variants of the Hopcroft--Karp algorithm for bottleneck matching (based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query. Our interest in this problem stems from the desire to compute distances between persistence diagrams, a problem that comes up frequently in topological data analysis. We show that our geometric matching algorithms lead to a substantial performance gain, both in running time and in memory consumption, over their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only other implementation available for comparing persistence diagrams.Comment: 20 pages, 10 figures; extended version of paper published in ALENEX 201

    Topological Regularization via Persistence-Sensitive Optimization

    Full text link
    Optimization, a key tool in machine learning and statistics, relies on regularization to reduce overfitting. Traditional regularization methods control a norm of the solution to ensure its smoothness. Recently, topological methods have emerged as a way to provide a more precise and expressive control over the solution, relying on persistent homology to quantify and reduce its roughness. All such existing techniques back-propagate gradients through the persistence diagram, which is a summary of the topological features of a function. Their downside is that they provide information only at the critical points of the function. We propose a method that instead builds on persistence-sensitive simplification and translates the required changes to the persistence diagram into changes on large subsets of the domain, including both critical and regular points. This approach enables a faster and more precise topological regularization, the benefits of which we illustrate with experimental evidence.Comment: The first two authors contributed equally to this wor
    corecore