2,170 research outputs found

    Project-based assessment for graduate coursework in physics

    Get PDF
    Project-based assessment, in the form of take-home exams, was trialed in an honours/masters level electromagnetic theory course. This assessment formed an integral part of the learning experience of the students, and students felt that this was effective method of learning.Comment: 5 pages, no figures, presented at 17th AIP Congress, Brisbane, 200

    Double-resonant extremely asymmetrical scattering of electromagnetic waves in periodic arrays separated by a gap

    Get PDF
    Two strong simultaneous resonances of scattering--double-resonant extremely asymmetrical scattering (DEAS)--are predicted in two parallel, oblique, periodic Bragg arrays separated by a gap, when the scattered wave propagates parallel to the arrays. One of these resonances is with respect to frequency (which is common to all types of Bragg scattering), and another is with respect to phase variation between the arrays. The diffractional divergence of the scattered wave is shown to be the main physical reason for DEAS in the considered structure. Although the arrays are separated, they are shown to interact by means of the diffractional divergence of the scattered wave across the gap from one array into the other. It is also shown that increasing separation between the two arrays results in a broader and weaker resonance with respect to phase shift. The analysis is based on a recently developed new approach allowing for the diffractional divergence of the scattered wave inside and outside the arrays. Physical interpretations of the predicted features of DEAS in separated arrays are also presented. Applicability conditions for the developed theory are derived.Comment: 8 pages, 5 figure

    Extremely asymmetrical scattering of electromagnetic waves in gradually varying periodic arrays

    Get PDF
    This paper analyses theoretically and numerically the effect of varying grating amplitude on the extremely asymmetrical scattering (EAS) of bulk and guided optical modes in non-uniform strip-like periodic Bragg arrays with stepwise and gradual variations in the grating amplitude across the array. A recently developed new approach based on allowance for the diffractional divergence of the scattered wave is used for this analysis. It is demonstrated that gradual variations in magnitude of the grating amplitude may change the pattern of EAS noticeably but not radically. On the other hand, phase variations in the grating may result in a radically new type of Bragg scattering - double-resonant EAS (DEAS). In this case, a combination of two strong simultaneous resonances (one with respect to frequency, and another with respect to the phase variation) is predicted to take place in non-uniform arrays with a step-like phase and gradual magnitude variations of the grating amplitude. The tolerances of EAS and DEAS to small gradual variations in the grating amplitude are determined. The main features of these types of scattering in non-uniform arrays are explained by the diffractional divergence of the scattered wave inside and outside the array.Comment: 13 pages, 10 figure

    Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters: grating eigenmodes

    Get PDF
    A highly unusual pattern of strong multiple resonances for bulk electromagnetic waves is predicted and analysed numerically in thick periodic holographic gratings in a slab with the mean permittivity that is larger than that of the surrounding media. This pattern is shown to exist in the geometry of grazing-angle scattering (GAS), that is when the scattered wave (+1 diffracted order) in the slab propagates almost parallel to the slab (grating) boundaries. The predicted resonances are demonstrated to be unrelated to resonant generation of the conventional guided modes of the slab. Their physical explanation is associated with resonant generation of a completely new type of eigenmodes in a thick slab with a periodic grating. These new slab eigenmodes are generically related to the grating; they do not exist if the grating amplitude is zero. The field structure of these eigenmodes and their dependence on structural and wave parameters is analysed. The results are extended to the case of GAS of guided modes in a slab with a periodic groove array of small corrugation amplitude and small variations in the mean thickness of the slab at the array boundaries.Comment: 16 pages, 6 figure

    Orientation of biological cells using plane-polarized Gaussian beam optical tweezers

    Get PDF
    Optical tweezers are widely used for the manipulation of cells and their internal structures. However, the degree of manipulation possible is limited by poor control over the orientation of trapped cells. We show that it is possible to controllably align or rotate disc shaped cells - chloroplasts of Spinacia oleracea - in a plane polarised Gaussian beam trap, using optical torques resulting predominantly from circular polarisation induced in the transmitted beam by the non-spherical shape of the cells.Comment: 9 pages, 6 figure

    Nanotrapping and the thermodynamics of optical tweezers

    Get PDF
    Particles that can be trapped in optical tweezers range from tens of microns down to tens of nanometres in size. Interestingly, this size range includes large macromolecules. We show experimentally, in agreement with theoretical expectations, that optical tweezers can be used to manipulate single molecules of polyethylene oxide suspended in water. The trapped molecules accumulate without aggregating, so this provides optical control of the concentration of macromolecules in solution. Apart from possible applications such as the micromanipulation of nanoparticles, nanoassembly, microchemistry, and the study of biological macromolecules, our results also provide insight into the thermodynamics of optical tweezers.Comment: 5 pages, 3 figures, presented at 17th AIP Congress, Brisbane, 200

    Dynamics of Spreading of Small Droplets of Chainlike Molecules on Surfaces

    Full text link
    Dynamics of spreading of small droplets on surfaces has been studied by the molecular dynamics method. Simulations have been performed for mixtures of solvent and dimer, and solvent and tetramer droplets. For solvent particles and dimers, layering occurs leading to stepped droplet shapes. For tetramers such shapes occur for relatively deep and strong surface potentials only. For wider and more shallow potentials, more rapid spreading and rounded droplet shapes occur. These results are in accordance with experimental data on small non - volatile polymer droplets. PACS numbers: 68.10Gw, 05.70.Ln, 61.20.Ja, 68.45GdComment: to appear in Europhys. Letters (1994), Latex, 12 page

    Forces from highly focused laser beams: modeling, measurement and application to refractive index measurements

    Get PDF
    The optical forces in optical tweezers can be robustly modeled over a broad range of parameters using generalsed Lorenz-Mie theory. We describe the procedure, and show how the combination of experimental measurement of properties of the trap coupled with computational modeling, can allow unknown parameters of the particle - in this case, the refractive index - to be determined.Comment: 5 pages, 4 figures, presented at 17th AIP Congress, Brisbane, 200
    • …
    corecore