29 research outputs found

    Fixed Parameter Undecidability for Wang Tilesets

    Full text link
    Deciding if a given set of Wang tiles admits a tiling of the plane is decidable if the number of Wang tiles (or the number of colors) is bounded, for a trivial reason, as there are only finitely many such tilesets. We prove however that the tiling problem remains undecidable if the difference between the number of tiles and the number of colors is bounded by 43. One of the main new tool is the concept of Wang bars, which are equivalently inflated Wang tiles or thin polyominoes.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Transpressional tectonics and Carboniferous magmatism in the Limousin, Massif Central, France: Structural and <sup>40</sup>Ar/<sup>39</sup>Ar investigations

    Get PDF
    New structural, microstructural, and 40Ar/39 Ar data from the NW Massif Central (France) provide additional constraints on the timing and tectonic setting of late Variscan granite magmatism. Previous studies had emphasized the role of late orogenic extension in the emplacement of granite plutons in the Limousin region. In contrast, the new data set is consistent with syntectonic emplacement of magma in a dextral simple shear active from 350 to 300 Ma in a transpressional regime. As an alternative hypothesis to late orogenic extension, we propose that magmas migrated into tensional bridges between active P shears associated with a lithospheric shear zone comparable to a pop-up structure. The Galician region, in the western end of the Ibero-Armorican tectonic arc, exhibits major left-lateral ductile shear zones which can be interpreted as conjugate structures to the Limousin and Armorican shear zones. Copyright 2007 by the American Geophysical Union

    Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES

    On usage of operators in combinatorics : construction, analysis and random generation

    No full text
    On étudie en combinatoire les objets munis d’une taille (la taille dans le cadre informatique peut se traduire par exemple par la mémoire occupée par l’objet). On appelle classe combinatoire un ensemble d’objets qui pour toute taille possède un nombre fini d’éléments. On peut par exemple considérer les textes régis par une certaine grammaire, dans ce cas la taille est le nombre de caractères, ou des arbres avec comme taille le nombre de noeuds. Une méthode naturelle pour décrire les classes, la méthode symbolique, consiste à décomposer les objets en sous-objets plus élémentaires à l’aide d’opérateurs (tels que l’union disjointe, le produit cartésien,...). On peut ensuite traduire ces décompositions sur des séries formelles. Le premier volet de résultats présentés dans cette thèse traite de la méthode symbolique et de son utilisation. On y présente des résultats asymptotiques sur des modèles d’arbres croissants issus de la théorie de la concurrence, puis une discussion sur comment décomposer certains opérateurs en réplications élémentaires. Le deuxième volet de résultats s’intéresse au sujet de la génération aléatoire uniforme d’objets dans une classe donnée. On montre tout d’abord comment générer des structures croissantes en adaptant les méthodes de génération récursive classiques aux opérateurs de produit croissant. On présente ensuite des résultats sur la génération de Boltzmann, avec une comparaison quantitative de deux méthodes, puis une extension permettant de conserver les propriétés d’uniformité de la génération en utilisant des approximations.We study in combinatorics objects with a size (size in informatics setting can be the memory space used to represent an object). We call a combinatorial class a set of objects who for a given size have only a finite number of elements. We can for example look at text generated by a given grammar, with the number of characters as size, or trees with the number of nodes as size. A natural way of describing classes, the symbolic method, consists in decomposing objects in more elementary sub-objects with operators (disjoint union, cartesian product,...). Then we can translate theses decompositions to formal power series.The first batch of results in this thesis deals with the symbolic method and its usage. We present asymptotic results on models of increasing trees coming from concurrency theory, then we discuss on how to decompose some operators in elementary replications. The second batch of results deals with uniform random generation of objects in a given class. We first show how to generate increasing structures by adapting the recursive generation techniques to increasing product operators. Then we present two results on Boltzmann generation, with a quantitative comparison of two methods and with an extension allowing us to use approximatives values while retaining the uniformity of the generation

    De l'usage des opérateurs en combinatoire : construction, analyse et génération aléatoire

    No full text
    We study in combinatorics objects with a size (size in informatics setting can be the memory space used to represent an object). We call a combinatorial class a set of objects who for a given size have only a finite number of elements. We can for example look at text generated by a given grammar, with the number of characters as size, or trees with the number of nodes as size. A natural way of describing classes, the symbolic method, consists in decomposing objects in more elementary sub-objects with operators (disjoint union, cartesian product,...). Then we can translate theses decompositions to formal power series.The first batch of results in this thesis deals with the symbolic method and its usage. We present asymptotic results on models of increasing trees coming from concurrency theory, then we discuss on how to decompose some operators in elementary replications. The second batch of results deals with uniform random generation of objects in a given class. We first show how to generate increasing structures by adapting the recursive generation techniques to increasing product operators. Then we present two results on Boltzmann generation, with a quantitative comparison of two methods and with an extension allowing us to use approximatives values while retaining the uniformity of the generation.On étudie en combinatoire les objets munis d’une taille (la taille dans le cadre informatique peut se traduire par exemple par la mémoire occupée par l’objet). On appelle classe combinatoire un ensemble d’objets qui pour toute taille possède un nombre fini d’éléments. On peut par exemple considérer les textes régis par une certaine grammaire, dans ce cas la taille est le nombre de caractères, ou des arbres avec comme taille le nombre de noeuds. Une méthode naturelle pour décrire les classes, la méthode symbolique, consiste à décomposer les objets en sous-objets plus élémentaires à l’aide d’opérateurs (tels que l’union disjointe, le produit cartésien,...). On peut ensuite traduire ces décompositions sur des séries formelles. Le premier volet de résultats présentés dans cette thèse traite de la méthode symbolique et de son utilisation. On y présente des résultats asymptotiques sur des modèles d’arbres croissants issus de la théorie de la concurrence, puis une discussion sur comment décomposer certains opérateurs en réplications élémentaires. Le deuxième volet de résultats s’intéresse au sujet de la génération aléatoire uniforme d’objets dans une classe donnée. On montre tout d’abord comment générer des structures croissantes en adaptant les méthodes de génération récursive classiques aux opérateurs de produit croissant. On présente ensuite des résultats sur la génération de Boltzmann, avec une comparaison quantitative de deux méthodes, puis une extension permettant de conserver les propriétés d’uniformité de la génération en utilisant des approximations

    Tilings by 1 Ă— 1 and 2 Ă— 2

    No full text
    We consider tilings of a k × n board by 1 × 1 and 2 × 2 squares and get combinatorical results on proportions of small squares for k ≤ 10 in plain case and for k ≤ 8 in cylindrical case

    Pointed versus Singular Boltzmann Samplers: a Comparative Analysis

    No full text
    International audienc
    corecore