170 research outputs found
Mars sample return: Site selection and sample acquisition study
Various vehicle and mission options were investigated for the continued exploration of Mars; the cost of a minimum sample return mission was estimated; options and concepts were synthesized into program possibilities; and recommendations for the next Mars mission were made to the Planetary Program office. Specific sites and all relevant spacecraft and ground-based data were studied in order to determine: (1) the adequacy of presently available data for identifying landing sities for a sample return mission that would assure the acquisition of material from the most important geologic provinces of Mars; (2) the degree of surface mobility required to assure sample acquisition for these sites; (3) techniques to be used in the selection and drilling of rock a samples; and (4) the degree of mobility required at the two Viking sites to acquire these samples
Balanced filters for the analysis of Al, Si, K, Ca, Fe, and Ni
Balanced filters evaluated for performance in X-ray fluorescence analysis of lunar and planetary surface material
Increased Breadth and Depth of Cytotoxic T Lymphocytes Responses against HIV-1-B Nef by Inclusion of Epitope Variant Sequences
Different vaccine approaches cope with HIV-1
diversity, ranging from
centralized1–4 to
variability-encompassing5–7
antigens. For all these strategies, a concern
remains: how does HIV-1 diversity impact epitope
recognition by the immune system? We studied the
relationship between HIV-1 diversity and
CD8+ T Lymphocytes (CTL) targeting
of HIV-1 subtype B Nef using 944 peptides (10-mers
overlapping by nine amino acids (AA)) that
corresponded to consensus peptides and their most
common variants in the HIV-1-B virus population.
IFN-γ ELISpot assays were performed using
freshly isolated PBMC from 26 HIV-1-infected
persons. Three hundred and fifty peptides elicited
a response in at least one individual. Individuals
targeted a median of 7 discrete regions. Overall,
33% of responses were directed against
viral variants but not elicited against
consensus-based test peptides. However, there was
no significant relationship between the frequency
of a 10-mer in the viral population and either its
frequency of recognition (Spearman's
correlation coefficient
ρ = 0.24) or the
magnitude of the responses
(ρ = 0.16). We found that
peptides with a single mutation compared to the
consensus were likely to be recognized (especially
if the change was conservative) and to elicit
responses of similar magnitude as the consensus
peptide. Our results indicate that
cross-reactivity between rare and frequent
variants is likely to play a role in the expansion
of CTL responses, and that maximizing antigenic
diversity in a vaccine may increase the breadth
and depth of CTL responses. However, since there
are few obvious preferred pathways to virologic
escape, the diversity that may be required to
block all potential escape pathways may be too
large for a realistic vaccine to accommodate.
Furthermore, since peptides were not recognized
based on their frequency in the population, it
remains unclear by which mechanisms
variability-inclusive antigens (i.e., constructs
enriched with frequent variants) expand CTL
recognition
Genetic regulation of gene expression of MIF family members in lung tissue
Macrophage migration inhibitory factor (MIF) is a cytokine found to be associated with chronic obstructive pulmonary disease (COPD). However, there is no consensus on how MIF levels differ in COPD compared to control conditions and there are no reports on MIF expression in lung tissue. Here we studied gene expression of members of the MIF family MIF, D-Dopachrome Tautomerase (DDT) and DDT-like (DDTL) in a lung tissue dataset with 1087 subjects and identified single nucleotide polymorphisms (SNPs) regulating their gene expression. We found higher MIF and DDT expression in COPD patients compared to non-COPD subjects and found 71 SNPs significantly influencing gene expression of MIF and DDTL. Furthermore, the platform used to measure MIF (microarray or RNAseq) was found to influence the splice variants detected and subsequently the direction of the SNP effects on MIF expression. Among the SNPs found to regulate MIF expression, the major LD block identified was linked to rs5844572, a SNP previously found to be associated with lower diffusion capacity in COPD. This suggests that MIF may be contributing to the pathogenesis of COPD, as SNPs that influence MIF expression are also associated with symptoms of COPD. Our study shows that MIF levels are affected not only by disease but also by genetic diversity (i.e. SNPs). Since none of our significant eSNPs for MIF or DDTL have been described in GWAS for COPD or lung function, MIF expression in COPD patients is more likely a consequence of disease-related factors rather than a cause of the disease
HIV-Specific Probabilistic Models of Protein Evolution
Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency Virus (HIV-1) genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what extent these empirical models are generalizable to a very different organism, such as HIV-1–the most extensively sequenced organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1 alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly chosen model introduced phylogenetic error. We argue that our model derivation procedure is immediately applicable to other organisms with extensive sequence data available, such as Hepatitis C and Influenza A viruses
Nematode endoparasites do not codiversify with their stick insect hosts.
Host-parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host-related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro- versus macroevolutionary dynamics in host-parasite interactions
The extraordinary evolutionary history of the reticuloendotheliosis viruses
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events
MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses
Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase (www.facebase.org, https://doi.org/10.25550/3-HXMC) and GitHub (https://github.com/jaydevine/MusMorph)
- …