4 research outputs found

    Signalling and functions of angiopoietin-1 in vascular protection

    Full text link
    Angiopoietin-1 (Ang1) has powerful vascular protective effects: suppressing plasma leakage, inhibiting vascular inflammation, and preventing endothelial death. Preclinical studies indicate that Ang1 may be therapeutically useful in a number of situations, including treatment of edema, endotoxemia, and transplant arteriosclerosis. However, the ligand has also been implicated in vessel remodeling, induction of angiogenesis and pulmonary hypertension, indicating that strategies to minimize any deleterious effects while optimizing vessel protection are likely to be needed. This review surveys the published data on vascular protective effects of Ang1 and highlights the therapeutic potential of this ligand, as well as possible limitations to its use. We also consider the data on Ang1 receptors and speculate on how to maximize therapeutic benefit by targeting the Tie receptors

    The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kB inhibitor ABIN-2

    Full text link
    Tie2 is a receptor tyrosine kinase expressed predominantly in endothelial cells and is essential for blood vessel formation and maintenance. The receptor has potent antiinflammatory effects on endothelial cells, suppressing vascular endothelial growth factor– and tumor necrosis factor–induced expression of leukocyte adhesion molecules and procoagulant tissue factor and inhibiting vascular leakage. To delineate the signaling pathways utilized by Tie2, we performed yeast two-hybrid screening of a human endothelial cell cDNA library and identified a novel protein interacting with the intracellular domain of the receptor. This protein was found to be human A20 binding inhibitor of NF-κB activation-2, ABIN-2, an inhibitor of NF-κB–mediated inflammatory gene expression. Coexpression of Tie2 and ABIN-2 in CHO cells confirmed the interaction occurs in mammalian cells. In contrast, Tie1 did not interact with ABIN-2 in the yeast two-hybrid system or mammalian cells. Deletion analysis identified the Tie2 binding motif to be encompassed between residues 171 and 272 in ABIN-2. Interaction was dependent on Tie2 autophosphorylation but ABIN-2 was not tyrosine phosphorylated by Tie2. Furthermore, in endothelial cells the interaction was stimulated by the Tie2 ligand angiopoietin-1. Expression of ABIN-2 deletion mutants in endothelial cells suppressed the ability of angiopoietin-1 to inhibit phorbol ester–stimulated NF-κB–dependent reporter gene activity. These findings provide the first direct link between Tie2 and a key regulator of inflammatory responses in endothelial cells. Interaction between Tie2 and ABIN-2 may be important in the vascular protective antiinflammatory actions of Tie2

    In vitro evolution predicts emerging SARS-CoV-2 mutations with high affinity for ACE2 and cross-species binding.

    No full text
    Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission

    In vitro evolution predicts emerging SARS-CoV-2 mutations with high affinity for ACE2 and cross-species binding.

    No full text
    Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission
    corecore