27,729 research outputs found

    Analytical combustion/emissions research related to the NASA high-speed research program

    Get PDF
    Increasing the pressure and temperature of the engines of new generation supersonic airliners increases the emissions of nitrogen oxides to a level that would have an adverse impact on the Earth's protective ozone layer. In the process of implementing low emissions combustor technologies, NASA Lewis Research Center has pursued a combustion analysis program to guide combustor design processes, to identify potential concepts of greatest promise, and to optimize them at low cost, with short turn-around time. The approach is to upgrade and apply advanced computer programs for gas turbine applications. Efforts have been made to improve the code capabilities of modeling the physics. Test cases and experiments are used for code validation. To provide insight into the combustion process and combustor design, two-dimensional and three-dimensional codes such as KIVA-II and LeRC 3D have been used. These codes are operational and calculations have been performed to guide low emissions combustion experiments

    Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    Get PDF
    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees

    Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory

    Full text link
    In this paper, we present an effectively numerical approach based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of laminated composite plates. The HSDT allows us to approximate displacement field that ensures by itself the realistic shear strain energy part without shear correction factors. IGA utilizing basis functions namely B-splines or non-uniform rational B-splines (NURBS) enables to satisfy easily the stringent continuity requirement of the HSDT model without any additional variables. The nonlinearity of the plates is formed in the total Lagrange approach based on the von-Karman strain assumptions. Numerous numerical validations for the isotropic, orthotropic, cross-ply and angle-ply laminated plates are provided to demonstrate the effectiveness of the proposed method

    Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers

    Get PDF
    For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters

    Optimal Pricing Effect on Equilibrium Behaviors of Delay-Sensitive Users in Cognitive Radio Networks

    Full text link
    This paper studies price-based spectrum access control in cognitive radio networks, which characterizes network operators' service provisions to delay-sensitive secondary users (SUs) via pricing strategies. Based on the two paradigms of shared-use and exclusive-use dynamic spectrum access (DSA), we examine three network scenarios corresponding to three types of secondary markets. In the first monopoly market with one operator using opportunistic shared-use DSA, we study the operator's pricing effect on the equilibrium behaviors of self-optimizing SUs in a queueing system. %This queue represents the congestion of the multiple SUs sharing the operator's single \ON-\OFF channel that models the primary users (PUs) traffic. We provide a queueing delay analysis with the general distributions of the SU service time and PU traffic using the renewal theory. In terms of SUs, we show that there exists a unique Nash equilibrium in a non-cooperative game where SUs are players employing individual optimal strategies. We also provide a sufficient condition and iterative algorithms for equilibrium convergence. In terms of operators, two pricing mechanisms are proposed with different goals: revenue maximization and social welfare maximization. In the second monopoly market, an operator exploiting exclusive-use DSA has many channels that will be allocated separately to each entering SU. We also analyze the pricing effect on the equilibrium behaviors of the SUs and the revenue-optimal and socially-optimal pricing strategies of the operator in this market. In the third duopoly market, we study a price competition between two operators employing shared-use and exclusive-use DSA, respectively, as a two-stage Stackelberg game. Using a backward induction method, we show that there exists a unique equilibrium for this game and investigate the equilibrium convergence.Comment: 30 pages, one column, double spac

    A perspective on the impact of radiation therapy on the immune rheostat.

    Get PDF
    The advent and success of immune checkpoint inhibitors (ICIs) in cancer treatment has broadened the spectrum of tumours that might be considered "immunogenic" and susceptible to immunotherapeutic (IT) intervention. Not all cancer types are sensitive, and not all patients with any given type respond. Combination treatment of ICIs with an established cytotoxic modality such as radiation therapy (RT) is a logical step towards improvement. For one, RT alone has been shown to be genuinely immunomodulatory and secondly pre-clinical data generally support combined ICI-RT approaches. This new integrated therapy for cancer treatment holds much promise, although there is still a lot to be learned about how best to schedule the treatments, manage the toxicities and determine what biomarkers might predict response, as well as many other issues. This review examines how RT alters the immune rheostat and how it might best be positioned to fully exploit IT

    Detection of lithium in nearby young late-M dwarfs

    Full text link
    Late M-type dwarfs in the solar neighborhood include a mixture of very low-mass stars and brown dwarfs which is difficult to disentangle due to the lack of constraints on their age such as trigonometric parallax, lithium detection and space velocity. We search for young brown dwarf candidates among a sample of 28 nearby late-M dwarfs with spectral types between M5.0 and M9.0, and we also search for debris disks around three of them. Based on theoretical models, we used the color I−JI-J, the JJ-band absolute magnitude and the detection of the Li I 6708 A˚\AA doublet line as a strong constraint to estimate masses and ages of our targets. For the search of debris disks, we observed three targets at submillimeter wavelength of 850 μ\mum. We report here the first clear detections of lithium absorption in four targets and a marginal detection in one target. Our mass estimates indicate that two of them are young brown dwarfs, two are young brown dwarf candidates and one is a young very low-mass star. The closest young field brown dwarf in our sample at only ∼\sim15 pc is an excellent benchmark for further studying physical properties of brown dwarfs in the range 100−-150 Myr. We did not detect any debris disks around three late-M dwarfs, and we estimated upper limits to the dust mass of debris disks around them.Comment: 10 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    On heart rate regulation in cycle-ergometer exercise

    Full text link
    © 2014 IEEE. In this paper, we have focused on the issue of regulating the human heart rate (HR) to a predefined reference trajectory, especially for cycle-ergometer exercise used for training or rehabilitation. As measuring HR is relatively easy compared to exercise intensity, it has been used in the wide range of training programs. The aim of this paper is to develop a non-model-based control strategy using proportional, integral and derivative (PID) controller/relay controller to regulate the HR to track a desired trajectory. In the case of using PID controller, the controller output signal is interpreted as a voice or auditory command, referred to as biofeedback, which can be heard by the exercising subject as a part of the control-loop. Alternatively, the relay controller output signals can be converted to some special words which can be recognised by the exerciser. However, in both cases, to effectively communicate to the user a change in exercise intensity, the timing of this feedback signal relative to the positions of the pedals becomes quite critical. A feedback signal delivered when the pedals are not in a suitable position to efficiently exert force may be ineffective and may lead to a cognitive disengagement of the user form the feedback controller. In this paper we examine the need and the consequence of synchronising the delivery of the feedback signal with an optimal and user specific placement of the pedal
    • …
    corecore