750 research outputs found
Contributions to modeling, structural analysis, and routing performance in dynamic networks
Cette thèse apporte des contributions à la modélisation, compréhension ainsi qu’à la communication efficace d’information dans les réseaux dynamiques peuplant la périphérie de l’Internet. Par réseaux dynamiques, nous signifions les réseaux pouvant être modélisés par des graphes dynamiques dans lesquels noeuds et liens évoluent temporellement. Dans la première partie de la thèse, nous proposons un nouveau modèle de mobilité - STEPS - qui permet de capturer un large spectre de comportement de mobilité humains. STEPS mets en oeuvre deux principes fondamentaux de la mobilité humaine : l’attachement préférentiel à une zone de prédilection et l’attraction vers une zone de prédilection. Nous proposons une modélisation markovienne de ce modèle de mobilité. Nous montrons que ce simple modèle paramétrique est capable de capturer les caractéristiques statistiques saillantes de la mobilité humaine comme la distribution des temps d’inter-contacts et de contacts. Dans la deuxième partie, en utilisant STEPS, nous analysons les propriétés comportementales et structurelles fondamentales des réseaux opportunistes. Nous redéfinissons dans le contexte des réseaux dynamiques la notion de structure petit monde et montrons comment une telle structure peut émerger. En particulier, nous montrons que les noeuds fortement dynamiques peuvent jouer le rôle de ponts entre les composants déconnectés, aident à réduire significativement la longueur du chemin caractéristique du réseau et contribuent à l’émergence du phénomène petit-monde dans les réseaux dynamiques. Nous proposons une façon de modéliser ce phénomène sous STEPS. À partir d’un réseau dynamique régulier dans lequel les noeuds limitent leur mobilité à leurs zones préférentielles respectives. Nous recablons ce réseau en injectant progressivement des noeuds nomades se déplaçant entre plusieurs zones. Nous montrons que le pourcentage de tels nœuds nomades est de 10%, le réseau possède une structure petit monde avec un fort taux de clusterisation et un faible longueur du chemin caractéristique. La troisième contribution de cette thèse porte sur l’étude de l’impact du désordre et de l’irrégularité des contacts sur la capacité de communication d’un réseau dynamique. Nous analysons le degré de désordre de réseaux opportunistes réels et montrons que si exploité correctement, celui-ci peut améliorer significativement les performances du routage. Nous introduisons ensuite un modèle permettant de capturer le niveau de désordre d’un réseau dynamique. Nous proposons deux algorithmes simples et efficaces qui exploitent la structure temporelle d’un réseau dynamique pour délivrer les messages avec un bon compromis entre l’usage des ressources et les performances. Les résultats de simulations et analytiques montrent que ce type d’algorithme est plus performant que les approches classiques. Nous mettons également en évidence aussi la structure de réseau pour laquelle ce type d’algorithme atteint ses performances optimum. Basé sur ce résultat théorique nous proposons un nouveau protocole de routage efficace pour les réseaux opportunistes centré sur le contenu. Dans ce protocole, les noeuds maintiennent, via leurs contacts opportunistes, une fonction d’utilité qui résume leur proximité spatio-temporelle par rapport aux autres noeuds. En conséquence, router dans un tel contexte se résume à suivre le gradient de plus grande pente conduisant vers le noeud destination. Cette propriété induit un algorithme de routage simple et efficace qui peut être utilisé aussi bien dans un contexte d’adressage IP que de réseau centré sur les contenus. Les résultats de simulation montrent que ce protocole superforme les protocoles de routage classiques déjà définis pour les réseaux opportunistes. La dernière contribution de cette thèse consiste à mettre en évidence une application potentielle des réseaux dynamiques dans le contexte du « mobile cloud computing ». En utilisant les techniques d’optimisation particulaires, nous montrons que la mobilité peut augmenter considérablement la capacité de calcul des réseaux dynamiques. De plus, nous montrons que la structure dynamique du réseau a un fort impact sur sa capacité de calcul. ABSTRACT : This thesis contributes to the modeling, understanding and efficient communication in dynamic networks populating the periphery of the Internet. By dynamic networks, we refer to networks that can be modeled by dynamic graphs in which nodes and links change temporally. In the first part of the thesis, we propose a new mobility model - STEPS - which captures a wide spectrum of human mobility behavior. STEPS implements two fundamental principles of human mobility: preferential attachment and attractor. We show that this simple parametric model is able to capture the salient statistical properties of human mobility such as the distribution of inter-contact/contact time. In the second part, using STEPS, we analyze the fundamental behavioral and structural properties of opportunistic networks. We redefine in the context of dynamic networks the concept of small world structure and show how such a structure can emerge. In particular, we show that highly dynamic nodes can play the role of bridges between disconnected components, helping to significantly reduce the length of network path and contribute to the emergence of small-world phenomenon in dynamic networks. We propose a way to model this phenomenon in STEPS. From a regular dynamic network in which nodes limit their mobility to their respective preferential areas. We rewire this network by gradually injecting highly nomadic nodes moving between different areas. We show that when the ratio of such nomadic nodes is around 10%, the network has small world structure with a high degree of clustering and a low characteristic path length. The third contribution of this thesis is the study of the impact of disorder and contact irregularity on the communication capacity of a dynamic network. We analyze the degree of disorder of real opportunistic networks and show that if used correctly, it can significantly improve routing performances. We then introduce a model to capture the degree of disorder in a dynamic network. We propose two simple and efficient algorithms that exploit the temporal structure of a dynamic network to deliver messages with a good tradeoff between resource usage and performance. The simulation and analytical results show that this type of algorithm is more efficient than conventional approaches. We also highlight also the network structure for which this type of algorithm achieves its optimum performance. Based on this theoretical result, we propose a new efficient routing protocol for content centric opportunistic networks. In this protocol, nodes maintain, through their opportunistic contacts, an utility function that summarizes their spatio-temporal proximity to other nodes. As a result, routing in this context consists in following the steepest slopes of the gradient field leading to the destination node. This property leads to a simple and effective algorithm routing that can be used both in the context of IP networks and content centric networks. The simulation results show that this protocol outperforms traditional routing protocols already defined for opportunistic networks. The last contribution of this thesis is to highlight the potential application of dynamic networks in the context of "mobile cloud computing." Using the particle optimization techniques, we show that mobility can significantly increase the processing capacity of dynamic networks. In addition, we show that the dynamic structure of the network has a strong impact on its processing capacity
Understanding and modeling the small-world phenomenon in dynamic networks
The small-world phenomenon first introduced in the context of static graphs consists of graphs with high clustering coefficient and low shortest path length. This is an intrinsic property of many real complex static networks. Recent research has shown that this structure is also observable in dynamic networks but how it emerges remains an open problem. In this paper, we propose a model capable of capturing the small-world behavior observed in various real traces. We then study information diffusion in such small-world networks. Analytical and simulation results with epidemic model show that the small-world structure increases dramatically the information spreading speed in dynamic networks
Swarm-based Intelligent Routing (SIR) - a new approach for efficient routing in content centric delay tolerant networks
This paper introduces Swarm-based Intelligent Routing (SIR), a swarm intelligence based approach used for routing content in content centric Pocket Switched Networks. We first formalize the notion of optimal path in DTN, then introduce a swarm intelligence based routing protocol adapted to content centric DTN that use a publish/subscribe communication paradigm. The protocol works in a fully decentralized way in which nodes do not have any knowledge about the global topology. Nodes, via opportunistic contacts, update utility functions which synthesizes their spatio-temporal proximity from the content subscribers. This individual behavior applied by each node leads to the collective formation of gradient fields between content subscribers and content providers. Therefore, content routing simply sums up to follow the steepest slope along these gradient fields to reach subscribers who are located at the minima of the field. Via real traces analysis and simulation, we demonstrate the existence and relevance of such gradient field and show routing performance improvements when compared to classical routing protocols previously defined for information routing in DTN
How mobility increases mobile cloud computing processing capacity
In this paper, we address a important and still unanswered question in mobile cloud computing ``how mobility impacts the distributed processing power of network and computing clouds formed from mobile ad-hoc networks ?''. Indeed, mobile ad-hoc networks potentially offer an aggregate cloud of resources delivering collectively processing, storage and networking resources. We demonstrate that the mobility can increase significantly the performances of distributed computation in such networks. In particular, we show that this improvement can be achieved more efficiently with mobility patterns that entail a dynamic small-world network structure on the mobile cloud. Moreover, we show that the small-world structure can improve significantly the resilience of mobile cloud computing services
Pervasive intelligent routing in content centric delay tolerant networks
This paper introduces a Swarm-Intelligence based Routing protocol (SIR) that aims to efficiently route information in content centric Delay Tolerant Networks (CCDTN) also dubbed pocket switched networks. First, this paper formalizes the notion of optimal path in CCDTN and introduces an original and efficient algorithm to process these paths in dynamic graphs. The properties and some invariant features of these optimal paths are analyzed and derived from several real traces. Then, this paper shows how optimal path in CCDTN can be found and used from a fully distributed swarm-intelligence based approach of which the global intelligent behavior (i.e. shortest path discovery and use) emerges from simple peer to peer interactions applied during opportunistic contacts. This leads to the definition of the SIR routing protocol of which the consistency, efficiency and performances are demonstrated from intensive representative simulations
Contributions to modeling, structural analysis, and routing performance in dynamic networks
This thesis contributes to the modeling, understanding and efficient communication in dynamic networks populating the periphery of the Internet. By dynamic networks, we refer to networks that can be modeled by dynamic graphs in which nodes and links change temporally. In the first part of the thesis, we propose a new mobility model - STEPS - which captures a wide spectrum of human mobility behavior. STEPS implements two fundamental principles of human mobility: preferential attachment and attractor. We show that this simple parametric model is able to capture the salient statistical properties of human mobility such as the distribution of inter-contact/contact time. In the second part, using STEPS, we analyze the fundamental behavioral and structural properties of opportunistic networks. We redefine in the context of dynamic networks the concept of small world structure and show how such a structure can emerge. In particular, we show that highly dynamic nodes can play the role of bridges between disconnected components, helping to significantly reduce the length of network path and contribute to the emergence of small-world phenomenon in dynamic networks. We propose a way to model this phenomenon in STEPS. From a regular dynamic network in which nodes limit their mobility to their respective preferential areas. We rewire this network by gradually injecting highly nomadic nodes moving between different areas. We show that when the ratio of such nomadic nodes is around 10%, the network has small world structure with a high degree of clustering and a low characteristic path length. The third contribution of this thesis is the study of the impact of disorder and contact irregularity on the communication capacity of a dynamic network. We analyze the degree of disorder of real opportunistic networks and show that if used correctly, it can significantly improve routing performances. We then introduce a model to capture the degree of disorder in a dynamic network. We propose two simple and efficient algorithms that exploit the temporal structure of a dynamic network to deliver messages with a good tradeoff between resource usage and performance. The simulation and analytical results show that this type of algorithm is more efficient than conventional approaches. We also highlight also the network structure for which this type of algorithm achieves its optimum performance. Based on this theoretical result, we propose a new efficient routing protocol for content centric opportunistic networks. In this protocol, nodes maintain, through their opportunistic contacts, an utility function that summarizes their spatio-temporal proximity to other nodes. As a result, routing in this context consists in following the steepest slopes of the gradient field leading to the destination node. This property leads to a simple and effective algorithm routing that can be used both in the context of IP networks and content centric networks. The simulation results show that this protocol outperforms traditional routing protocols already defined for opportunistic networks. The last contribution of this thesis is to highlight the potential application of dynamic networks in the context of "mobile cloud computing." Using the particle optimization techniques, we show that mobility can significantly increase the processing capacity of dynamic networks. In addition, we show that the dynamic structure of the network has a strong impact on its processing capacity
On the Impact of Disorder on Dynamic Network Navigation
In this extended abstract, we highlight the impact of disorder on routing algorithms in dynamic networks. We show that real dynamic networks exhibit some degree of disorder which, if efficiently exploited, can improve significantly routing performance in such networks
Modelling mobile opportunistic networks - from mobility to structural and behavioral analysis
In this work, we propose a modeling framework which captures the most fundamental behavioral and structural properties of mobile opportunistic networks from mobility to structural level. First, we introduce STEPS -- a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS abstracts the fundamental spatio-temporal behaviors of human mobility, i.e., preferential attachment and attractors, by using a power law to drive nodes' movement. We show that the model makes it possible to express key peer-to-peer properties of opportunistic networks such as inter-contact/contact time distributions. Leveraging on the expressive and modeling power of STEPS, we analyze how fundamental structural properties can emerge from the combination of elementary node's mobility behavior. Specifically, we bring out one sufficient condition of the emergence of the famous small-world structure in opportunistic networks. We also show that this special dynamic network structure improves significantly the communication capacity of opportunistic networks
- …