1,225 research outputs found
RETURNN as a Generic Flexible Neural Toolkit with Application to Translation and Speech Recognition
We compare the fast training and decoding speed of RETURNN of attention
models for translation, due to fast CUDA LSTM kernels, and a fast pure
TensorFlow beam search decoder. We show that a layer-wise pretraining scheme
for recurrent attention models gives over 1% BLEU improvement absolute and it
allows to train deeper recurrent encoder networks. Promising preliminary
results on max. expected BLEU training are presented. We are able to train
state-of-the-art models for translation and end-to-end models for speech
recognition and show results on WMT 2017 and Switchboard. The flexibility of
RETURNN allows a fast research feedback loop to experiment with alternative
architectures, and its generality allows to use it on a wide range of
applications.Comment: accepted as demo paper on ACL 201
Robust Beam Search for Encoder-Decoder Attention Based Speech Recognition without Length Bias
As one popular modeling approach for end-to-end speech recognition,
attention-based encoder-decoder models are known to suffer the length bias and
corresponding beam problem. Different approaches have been applied in simple
beam search to ease the problem, most of which are heuristic-based and require
considerable tuning. We show that heuristics are not proper modeling
refinement, which results in severe performance degradation with largely
increased beam sizes. We propose a novel beam search derived from
reinterpreting the sequence posterior with an explicit length modeling. By
applying the reinterpreted probability together with beam pruning, the obtained
final probability leads to a robust model modification, which allows reliable
comparison among output sequences of different lengths. Experimental
verification on the LibriSpeech corpus shows that the proposed approach solves
the length bias problem without heuristics or additional tuning effort. It
provides robust decision making and consistently good performance under both
small and very large beam sizes. Compared with the best results of the
heuristic baseline, the proposed approach achieves the same WER on the 'clean'
sets and 4% relative improvement on the 'other' sets. We also show that it is
more efficient with the additional derived early stopping criterion.Comment: accepted at INTERSPEECH202
Language Modeling with Deep Transformers
We explore deep autoregressive Transformer models in language modeling for
speech recognition. We focus on two aspects. First, we revisit Transformer
model configurations specifically for language modeling. We show that well
configured Transformer models outperform our baseline models based on the
shallow stack of LSTM recurrent neural network layers. We carry out experiments
on the open-source LibriSpeech 960hr task, for both 200K vocabulary word-level
and 10K byte-pair encoding subword-level language modeling. We apply our
word-level models to conventional hybrid speech recognition by lattice
rescoring, and the subword-level models to attention based encoder-decoder
models by shallow fusion. Second, we show that deep Transformer language models
do not require positional encoding. The positional encoding is an essential
augmentation for the self-attention mechanism which is invariant to sequence
ordering. However, in autoregressive setup, as is the case for language
modeling, the amount of information increases along the position dimension,
which is a positional signal by its own. The analysis of attention weights
shows that deep autoregressive self-attention models can automatically make use
of such positional information. We find that removing the positional encoding
even slightly improves the performance of these models.Comment: To appear in the proceedings of INTERSPEECH 201
Context-Dependent Acoustic Modeling without Explicit Phone Clustering
Phoneme-based acoustic modeling of large vocabulary automatic speech
recognition takes advantage of phoneme context. The large number of
context-dependent (CD) phonemes and their highly varying statistics require
tying or smoothing to enable robust training. Usually, Classification and
Regression Trees are used for phonetic clustering, which is standard in Hidden
Markov Model (HMM)-based systems. However, this solution introduces a secondary
training objective and does not allow for end-to-end training. In this work, we
address a direct phonetic context modeling for the hybrid Deep Neural Network
(DNN)/HMM, that does not build on any phone clustering algorithm for the
determination of the HMM state inventory. By performing different
decompositions of the joint probability of the center phoneme state and its
left and right contexts, we obtain a factorized network consisting of different
components, trained jointly. Moreover, the representation of the phonetic
context for the network relies on phoneme embeddings. The recognition accuracy
of our proposed models on the Switchboard task is comparable and outperforms
slightly the hybrid model using the standard state-tying decision trees.Comment: Submitted to Interspeech 202
- …