330 research outputs found
Anomalous Pressure Dependence of Kadowaki-Woods ratio and Crystal Field Effects in Mixed-valence YbInCu4
The mixed-valence (MV) compound YbInCu4 was investigated by electrical
resistivity and ac specific heat at low temperatures and high pressures. At
atmospheric pressure, its Kadowaki-Woods (KW) ratio, A/\gamma ^2, is 16 times
smaller than the universal value R_{KW}(=1.0 x 10^-5 \mu \Omega cm mol^2 K^2
mJ^-2), but sharply increases to 16.5R_{KW} at 27 kbar. The pressure-induced
change in the KW ratio and deviation from R_{KW} are analyzed in terms of the
change in f-orbital degeneracy N and carrier density n. This analysis is
further supported by a dramatic change in residual resistivity \rho_0 near 25
kbar, where \rho_0 jumps by a factor of 7.Comment: 4pages, 3figure
Understanding the Heavy Fermion Phenomenology from Microscopic Model
We solve the 3D periodic Anderson model via two impurity DMFT. We obtain the
temperature v.s. hybridization phase diagram. In approaching the quantum
critical point (QCP) both the Neel and lattice Kondo temperatures decrease and
they do not cross at the lowest temperature we reached. While strong
ferromagnetic spin fluctuation on the Kondo side is observed, our result
indicates the critical static spin susceptibility is local in space at the QCP.
We observe in the crossover region logarithmic temperature dependence in the
specific heat coefficient and spin susceptibility
Enhancement of superconductive critical temperatures in almost empty or full bands in two dimensions: possible relevance to beta-HfNCl, C60 and MgB2
We examine possibility of enhancement of superconductive critical temperature
in two-dimensions. The weak coupling BCS theory is applied, especially when the
Fermi level is near the edges of the electronic bands. The attractive
interaction depends on due to screening. The density of states(DOS)
does not have a peak near the bottom of the band, but -dependent
contribution to DOS (electron density on the Fermi surface) has a diverging
peak at the bottom or top. These features lead to significant enhancement of
the critical temperatures. The results are qualitatively consistent with the
superconductive behaviors of HfNCl (\Tc \le 25K) and ZrNCl(\Tc \le 15K),
C with a field-effect transistor configuration (\Tc = 52K), and
MgB (\Tc \approx 40K) which have the unexpectedly high superconductive
critical transition temperatures.Comment: 5 pages,4 figure
Symplectic quaternion scheme for biophysical molecular dynamics
Massively parallel biophysical molecular dynamics simulations, coupled with efficient methods, promise to open biologically significant time scales for study. In order to promote efficient fine-grained parallel algorithms with low communication overhead, the fast degrees of freedom in these complex systems can be divided into sets of rigid bodies. Here, a novel Hamiltonian form of a minimal, nonsingular representation of rigid body rotations, the unit quaternion, is derived, and a corresponding reversible, symplectic integrator is presented. The novel technique performs very well on both model and biophysical problems in accord with a formal theoretical analysis given within, which gives an explicit condition for an integrator to possess a conserved quantity, an explicit expression for the conserved quantity of a symplectic integrator, the latter following and in accord with Calvo and Sanz-Sarna, Numerical Hamiltonian Problems (1994), and extension of the explicit expression to general systems with a flat phase space
Analysis of the spectral function of Nd1.85Ce0.15CuO4, obtained by angle resolved photoemission spectroscopy
Samples of Nd(2-x)Ce(x)CuO(4), an electron-doped high temperature
superconducting cuprate (HTSC), near optimal doping at x = 0.155 were measured
via angle resolved photoemission (ARPES). We report a renormalization feature
in the self energy ("kink") in the band dispersion at 50 - 60 meV present in
nodal and antinodal cuts across the Fermi surface. Specifically, while the kink
had previously only been seen in the antinodal region, it is now observed also
in the nodal region, reminiscent of what has been observed in hole-doped
cuprates.Comment: 4 pages, 4 figure
Multiplet Effects in the Quasiparticle Band Structure of the Anderson Model
In this paper, we examine the mean field electronic structure of the
Anderson lattice model in a slave boson approximation, which should
be useful in understanding the physics of correlated metals with more than one
f electron per site such as uranium-based heavy fermion superconductors. We
find that the multiplet structure of the ion acts to quench the crystal
field splitting in the quasiparticle electronic structure. This is consistent
with experimental observations in such metals as .Comment: 9 pages, revtex, 3 uuencoded postscript figures attached at en
Extended Dynamical Mean Field Theory Study of the Periodic Anderson Model
We investigate the competition of the Kondo and the RKKY interactions in
heavy fermion systems. We solve a periodic Anderson model using Extended
Dynamical Mean Field Theory (EDMFT) with QMC. We monitor simultaneously the
evolution of the electronic and magnetic properties. As the RKKY coupling
increases the heavy fermion quasiparticle unbinds and a local moment forms. At
a critical RKKY coupling there is an onset of magnetic order. Within EDMFT the
two transitions occur at different points and the disapparence of the magnetism
is not described by a local quantum critical point.Comment: 4 pages, 4 figure
Non-Fermi liquid signatures in the Hubbard Model due to van Hove singularities
When a van-Hove singularity is located in the vicinity of the Fermi level,
the electronic scattering rate acquires a non-analytic contribution. This
invalidates basic assumptions of Fermi liquid theory and within perturbative
treatments leads to a non-Fermi liquid self-energy and transport
properties.Such anomalies are shown to also occur in the strongly correlated
metallic state. We consider the Hubbard model on a two-dimensional square
lattice with nearest and next-nearest neighbor hopping within the single-site
dynamical mean-field theory. At temperatures on the order of the low-energy
scale an unusual maximum emerges in the imaginary part of the self-energy
which is renormalized towards the Fermi level for finite doping. At zero
temperature this double-well structure is suppressed, but an anomalous energy
dependence of the self-energy remains. For the frustrated Hubbard model on the
square lattice with next-nearest neighbor hopping, the presence of the van Hove
singularity changes the asymptotic low temperature behavior of the resistivity
from a Fermi liquid to non-Fermi liquid dependency as function of doping. The
results of this work are discussed regarding their relevance for
high-temperature cuprate superconductors.Comment: revised version, accepted in Phys.Rev.
A Field Effect Transitor based on the Mott Transition in a Molecular Layer
Here we propose and analyze the behavior of a FET--like switching device, the
Mott transition field effect transistor, operating on a novel principle, the
Mott metal--insulator transition. The device has FET-like characteristics with
a low ``ON'' impedance and high ``OFF'' impedance. Function of the device is
feasible down to nanoscale dimensions. Implementation with a class of organic
charge transfer complexes is proposed.Comment: Revtex 11pages, Figures available upon reques
- …