108 research outputs found
RED: Reinforced Encoder-Decoder Networks for Action Anticipation
Action anticipation aims to detect an action before it happens. Many real
world applications in robotics and surveillance are related to this predictive
capability. Current methods address this problem by first anticipating visual
representations of future frames and then categorizing the anticipated
representations to actions. However, anticipation is based on a single past
frame's representation, which ignores the history trend. Besides, it can only
anticipate a fixed future time. We propose a Reinforced Encoder-Decoder (RED)
network for action anticipation. RED takes multiple history representations as
input and learns to anticipate a sequence of future representations. One
salient aspect of RED is that a reinforcement module is adopted to provide
sequence-level supervision; the reward function is designed to encourage the
system to make correct predictions as early as possible. We test RED on
TVSeries, THUMOS-14 and TV-Human-Interaction datasets for action anticipation
and achieve state-of-the-art performance on all datasets
Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation
In this work, we address the problem of spatio-temporal action detection in
temporally untrimmed videos. It is an important and challenging task as finding
accurate human actions in both temporal and spatial space is important for
analyzing large-scale video data. To tackle this problem, we propose a cascade
proposal and location anticipation (CPLA) model for frame-level action
detection. There are several salient points of our model: (1) a cascade region
proposal network (casRPN) is adopted for action proposal generation and shows
better localization accuracy compared with single region proposal network
(RPN); (2) action spatio-temporal consistencies are exploited via a location
anticipation network (LAN) and thus frame-level action detection is not
conducted independently. Frame-level detections are then linked by solving an
linking score maximization problem, and temporally trimmed into spatio-temporal
action tubes. We demonstrate the effectiveness of our model on the challenging
UCF101 and LIRIS-HARL datasets, both achieving state-of-the-art performance.Comment: Accepted at BMVC 2017 (oral
Automatic Concept Discovery from Parallel Text and Visual Corpora
Humans connect language and vision to perceive the world. How to build a
similar connection for computers? One possible way is via visual concepts,
which are text terms that relate to visually discriminative entities. We
propose an automatic visual concept discovery algorithm using parallel text and
visual corpora; it filters text terms based on the visual discriminative power
of the associated images, and groups them into concepts using visual and
semantic similarities. We illustrate the applications of the discovered
concepts using bidirectional image and sentence retrieval task and image
tagging task, and show that the discovered concepts not only outperform several
large sets of manually selected concepts significantly, but also achieves the
state-of-the-art performance in the retrieval task.Comment: To appear in ICCV 201
Cascaded Boundary Regression for Temporal Action Detection
Temporal action detection in long videos is an important problem.
State-of-the-art methods address this problem by applying action classifiers on
sliding windows. Although sliding windows may contain an identifiable portion
of the actions, they may not necessarily cover the entire action instance,
which would lead to inferior performance. We adapt a two-stage temporal action
detection pipeline with Cascaded Boundary Regression (CBR) model.
Class-agnostic proposals and specific actions are detected respectively in the
first and the second stage. CBR uses temporal coordinate regression to refine
the temporal boundaries of the sliding windows. The salient aspect of the
refinement process is that, inside each stage, the temporal boundaries are
adjusted in a cascaded way by feeding the refined windows back to the system
for further boundary refinement. We test CBR on THUMOS-14 and TVSeries, and
achieve state-of-the-art performance on both datasets. The performance gain is
especially remarkable under high IoU thresholds, e.g. map@tIoU=0.5 on THUMOS-14
is improved from 19.0% to 31.0%
- …