86 research outputs found

    NASA GRC Wide Bandgap Electronics Technical Advancement Issues for Consideration by Dept. of Energy

    Get PDF
    What is needed to manufacture quality SiC power switches for space applications within the next 5 years? How can the proposed Dept. of Energy Consortium help achieve this goal

    Method for Providing Semiconductors Having Self-Aligned Ion Implant

    Get PDF
    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters

    Method for Providing Semiconductors Having Self-Aligned Ion Implant

    Get PDF
    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters

    Silicon Carbide Technology

    Get PDF
    Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified

    Technical Primer on Design and SPICE Modeling of Circuits for NASA Glenn SiC JFET IC Version 12 Prototype Wafer Run Part 1: SiC JFET Behavior and SPICE Modeling

    Get PDF
    This presentation illustratively communicates how to SPICE model silicon carbide (SiC) SiC junction field effect transistors (JFETs) for designing circuits for NASA GRC's upcoming prototype fabrication of SiC JFET IC Version 12

    Inclusion of Body-Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors

    Get PDF
    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model

    Improved Silicon Carbide Crystals Grown From Atomically Flat Surfaces

    Get PDF
    The NASA Glenn Research Center is demonstrating that atomically flat (i.e., step-free) silicon carbide (SiC) surfaces are ideal for realizing greatly improved wide bandgap semiconductor films with lower crystal defect densities. Further development of these improved films could eventually enable harsh-environment electronics beneficial to jet engine and other aerospace and automotive applications, as well as much more efficient and compact power distribution and control. The technique demonstrated could also improve blue-light lasers and light-emitting-diode displays

    Silicon Carbide Junction Field Effect Transistor Digital Logic Gates Demonstrated at 600 deg. C

    Get PDF
    The High Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. The HTIES team recently fabricated and demonstrated the first semiconductor digital logic gates ever to function at 600 C

    SPICE Modeling of Body Bias Effect in 4H-SiC Integrated Circuit Resistors

    Get PDF
    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model

    High-Field Fast-Risetime Pulse Failures in 4H- and 6H-SiC pn Junction Diodes

    Get PDF
    We report the observation of anomalous reverse breakdown behavior in moderately doped (2-3 x 10(exp 17 cm(exp -3)) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so that SiC high-field devices can operate with the same high reliability as silicon power devices
    • …
    corecore