26 research outputs found

    ALMA Observations of a Candidate Molecular Outflow in an Obscured Quasar

    Full text link
    We present Atacama Large Millimeter/Submillimeter Array (ALMA) CO (1-0) and CO (3-2) observations of SDSS J135646.10+102609.0, an obscured quasar and ultra-luminous infrared galaxy (ULIRG) with two merging nuclei and a known 20-kpc-scale ionized outflow. The total molecular gas mass is M_{mol} ~ 9^{+19}_{-6} x 10^8 Msun, mostly distributed in a compact rotating disk at the primary nucleus (M_{mol} ~ 3 x 10^8 Msun) and an extended tidal arm (M_{mol} ~ 5 x 10^8 Msun). The tidal arm is one of the most massive molecular tidal features known; we suggest that it is due to the lower chance of shock dissociation in this elliptical/disk galaxy merger. In the spatially resolved CO (3-2) data, we find a compact (r ~ 0.3 kpc) high velocity (v ~ 500 km/s) red-shifted feature in addition to the rotation at the N nucleus. We propose a molecular outflow as the most likely explanation for the high velocity gas. The outflowing mass of M_{mol} ~ 7 x 10^7 Msun and the short dynamical time of t_{dyn} ~ 0.6 Myr yield a very high outflow rate of \dot{M}_{mol} ~ 350 Msun/yr and can deplete the gas in a million years. We find a low star formation rate (< 16 Msun/yr from the molecular content and < 21 Msun/yr from the far-infrared spectral energy distribution decomposition) that is inadequate to supply the kinetic luminosity of the outflow (\dot{E} ~ 3 x 10^43 erg/s). Therefore, the active galactic nucleus, with a bolometric luminosity of 10^46 erg/s, likely powers the outflow. The momentum boost rate of the outflow (\dot{p}/(Lbol/c) ~ 3) is lower than typical molecular outflows associated with AGN, which may be related to its compactness. The molecular and ionized outflows are likely two distinct bursts induced by episodic AGN activity that varies on a time scale of 10^7 yr.Comment: 16 pages, 7 figures, ApJ accepte

    Observations of Feedback from Radio-Quiet Quasars: I. Extents and Morphologies of Ionized Gas Nebulae

    Full text link
    Black hole feedback -- the strong interaction between the energy output of supermassive black holes and their surrounding environments -- is routinely invoked to explain the absence of overly luminous galaxies, the black hole vs. bulge correlations and the similarity of black hole accretion and star formation histories. Yet direct probes of this process in action are scarce and limited to small samples of active nuclei. We present Gemini IFU observations of the distribution of ionized gas around luminous, obscured, radio-quiet (RQ) quasars at z~0.5. We detect extended ionized gas nebulae via [O III]5007 emission in every case, with a mean diameter of 28 kpc. These nebulae are nearly perfectly round. The regular morphologies of nebulae around RQ quasars are in striking contrast with lumpy or elongated nebulae seen around radio galaxies at low and high redshifts. We present the uniformly measured size-luminosity relationship of [O III] nebulae around Seyfert 2 galaxies and type 2 quasars spanning 6 orders of magnitude in luminosity and confirm the flat slope of the correlation (R ~ L^{0.25+/-0.02}). We find a universal behavior of the [O III]/H-beta ratio in our entire RQ quasar sample: it persists at a constant value (~10) in the central regions, until reaching a "break" isophotal radius ranging from 4 to 11 kpc where it starts to decrease. We propose a model of clumpy nebulae in which clouds that produce line emission transition from being ionization-bounded at small distances from the quasar to being matter-bounded in the outer parts of the nebula, which qualitatively explains the observed line ratio and surface brightness profiles. It is striking that we see such smooth and round large-scale gas nebulosities in this sample, which are inconsistent with illuminated merger debris and which we suggest may be the signature of accretion energy from the nucleus reaching gas at large scales.Comment: 44 pages, 11 figures, 3 tables. Accepted for publication in MNRA

    Observations of Feedback from Radio-Quiet Quasars - II. Kinematics of Ionized Gas Nebulae

    Full text link
    The prevalence and energetics of quasar feedback is a major unresolved problem in galaxy formation theory. In this paper, we present Gemini Integral Field Unit observations of ionized gas around eleven luminous, obscured, radio-quiet quasars at z~0.5 out to ~15 kpc from the quasar; specifically, we measure the kinematics and morphology of [O III]5007 emission. The round morphologies of the nebulae and the large line-of-sight velocity widths (with velocities containing 80% of the emission as high as 1000 km/s combined with relatively small velocity difference across them (from 90 to 520 km/s) point toward wide-angle quasi-spherical outflows. We use the observed velocity widths to estimate a median outflow velocity of 760 km/s, similar to or above the escape velocities from the host galaxies. The line-of-sight velocity dispersion declines slightly toward outer parts of the nebulae (by 3% per kpc on average). The majority of nebulae show blueshifted excesses in their line profiles across most of their extents, signifying gas outflows. For the median outflow velocity, we find a kinetic energy flow between 4x10^{44} and 3x10^{45} erg/s and mass outflow rate between 2000 and 20000 Msun/yr. These values are large enough for the observed quasar winds to have a significant impact on their host galaxies. The median rate of converting bolometric luminosity to kinetic energy of ionized gas clouds is ~2%. We report four new candidates for "super-bubbles" -- outflows that may have broken out of the denser regions of the host galaxy.Comment: 23 pages, 10 figures, 2 tables, accepted for publication in MNRA

    The black holes of radio galaxies during the "Quasar Era": Masses, accretion rates, and evolutionary stage

    Full text link
    We present an analysis of the AGN broad-line regions of 6 powerful radio galaxies at z>~2 (HzRGs) with rest-frame optical imaging spectroscopy obtained at the VLT. All galaxies have luminous (L(H-alpha)=few x 10^44 erg s^-1), spatially unresolved H-alpha line emission with FWHM>= 10,000 km s^-1 at the position of the nucleus, suggesting their AGN are powered by supermassive black holes with masses of few x 10^9 M_sun and accretion luminosities of a few percent of the Eddington luminosity. In two galaxies we also detect the BLRs in H-beta, suggesting relatively low extinction of A_V~1 mag, which agrees with constraints from X-ray observations. By relating black hole and bulge mass, we find a possible offset towards higher black-hole masses of at most ~0.6 dex relative to nearby galaxies at a given host mass, although each individual galaxy is within the scatter of the local relationship. If not entirely from systematic effects, this would then suggest that the masses of the host galaxies have increased by at most a factor ~4 since z~2 relative to the black-hole masses, perhaps through accretion of satellite galaxies or because of a time lag between star formation in the host galaxy and AGN fueling. We also compare the radiative and mechanical energy output (from jets) of our targets with predictions of recent models of "synthesis" or "grand unified" AGN feedback, which postulate that AGN with similar radiative and mechanical energy output rates to those found in our HzRGs may be nearing the end of their period of active growth. We discuss evidence that they may reach this stage at the same time as their host galaxies.Comment: A&A in pres

    Using ALMA to resolve the nature of the early star-forming large-scale structure PLCK G073.4-57.5

    Get PDF
    Galaxy clusters at high redshift are key targets for understanding matter assembly in the early Universe, yet they are challenging to locate. A sample of >2000 high-z candidate structures has been found using Planck's all-sky submm maps, and a sub-set of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large overdensities of dusty star-forming galaxies. In order to resolve and characterise the individual galaxies we targeted the eight brightest SPIRE sources in the centre of the Planck peak PLCK G073.4-57.5 using ALMA at 1.3 mm, and complemented these observations with data from IRAC, WIRCam J,K, and SCUBA-2. We detected a total of 18 millimetre galaxies brighter than 0.3 mJy in 2.4 arcmin^2. The ALMA source density is 8-30 times higher than average background estimates and larger than seen in typical 'proto-cluster' fields. We were able to match all but one of the ALMA sources to a NIR counterpart. The most significant (four) SCUBA-2 sources are not included in the ALMA pointings, but we find an 8sigma stacking detection of the ALMA sources in the SCUBA-2 map at 850 um. We derive photo-z, L_IR, SFR, stellar mass, T_dust, M_dust for all of the ALMA galaxies; the photo-zs identify two groups each of five sources, at z~1.5 and 2.4. The two groups show two 'red sequences' (i.e. similar NIR [3.6]-[4.5] colours and different J-K colours). The majority of the ALMA-detected galaxies are on the SFR versus stellar mass main sequence, and half of the sample is more massive than the characteristic stellar mass at the corresponding redshift. Serendipitous CO line detections in two of the galaxies appear to match their photometric redshifts at z~1.54. We performed an analysis of star-formation efficiencies and CO- and mm-continuum-derived gas fractions of our ALMA sources, combined with a sample of 1<z<3 cluster and proto-cluster members.Comment: 26 pages, revised version, Astronomy & Astrophysics accepte

    Modelling observable signatures of jet-ISM interaction: thermal emission and gas kinematics

    Get PDF
    Relativistic jets are believed to have a substantial impact on the gas dynamics and evolution of the interstellar medium (ISM) of their host galaxies. In this paper, we aim to draw a link between the simulations and the observable signatures of jet-ISM interactions by analyzing the emission morphology and gas kinematics resulting from jet-induced shocks in simulated disc and spherical systems. We find that the jet-induced laterally expanding forward shock of the energy bubble sweeping through the ISM causes large-scale outflows, creating shocked emission and high-velocity dispersion in the entire nuclear regions (2\sim2 kpcs) of their hosts. The jetted systems exhibit larger velocity widths (> 800 km/s), broader Position-Velocity maps and distorted symmetry in the disc's projected velocities than systems without a jet. We also investigate the above quantities at different inclination angles of the observer with respect to the galaxy. Jets inclined to the gas disc of its host are found to be confined for longer times, and consequently couple more strongly with the disc gas. This results in prominent shocked emission and high-velocity widths, not only along the jet's path, but also in the regions perpendicular to them. Strong interaction of the jet with a gas disc can also distort its morphology. However, after the jets escape their initial confinement, the jet-disc coupling is weakened, thereby lowering the shocked emission and velocity widths.Comment: Matches the Published versio

    Relativistic jet feedback – II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    Get PDF
    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free–free absorption can account for the ∼ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free–free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy

    Neutral versus ionized gas kinematics at z similar or equal to 2.6:the AGN-host starburst galaxy PKS 0529-549

    Get PDF
    International audienceWe present a multiwavelength study of the AGN-host starburst galaxy PKS 0529-549 at |zz| ≃ 2.6. We use (1) new ALMA observations of the dust continuum and of the [Ci] 370 |μ\mu|m line, tracing molecular gas, (2) SINFONI spectroscopy of the [O iii] 5007 Å line, tracing ionized gas, and (3) ATCA radio continuum images, tracing synchrotron emission. Both [C i] and [O iii] show regular velocity gradients, but their systemic velocities and position angles differ by ∼300|kms1\, \mathrm{km}\, \mathrm{s}^{-1}| and ∼30°, respectively. The [C i] is consistent with a rotating disc, aligned with the dust and stellar continuum, while the [O iii] likely traces an outflow, aligned with two AGN-driven radio lobes. We model the [C i] cube using 3D disc models, which give best-fitting rotation velocities V_rot ≃ 310|kms1\, \mathrm{km}\, \mathrm{s}^{-1}|and velocity dispersions σ_V ≲ 30|kms1\, \mathrm{km}\, \mathrm{s}^{-1}|⁠. Hence, the [C i] disc has V_rot/σ_V ≳10 and is not particularly turbulent, similar to local galaxy discs. The dynamical mass (∼10^11 M_⊙) is comparable to the baryonic mass within the errors. This suggests that baryons dominate the inner galaxy dynamics, similar to massive galaxies at |zz| ≃ 0. Remarkably, PKS 0529-549 lies on the local baryonic Tully–Fisher relation, indicating that at least some massive galaxies are already in place and kinematically relaxed at |zz| ≃ 2.6. This work highlights the potential of the [C i] line to trace galaxy dynamics at high |zz|⁠, as well as the importance of multiwavelength data to interpret gas kinematics

    Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [Nadia L. Zakamska, et al., 'Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars', MNRAS, 455(4): 4191-4211, first published online December 4, 2015, is available online via doi: 10.1093/mnras/stv2571 Published by Oxford University Press on behalf of the Royal Astronomical Society. Copyright 2015 The AuthorsRadio emission from radio-quiet quasars may be due to star formation in the quasar host galaxy, to a jet launched by the supermassive black hole, or to relativistic particles accelerated in a wide-angle radiatively driven outflow. In this paper, we examine whether radio emission from radio-quiet quasars is a byproduct of star formation in their hosts. To this end, we use infrared spectroscopy and photometry from Spitzer and Herschel to estimate or place upper limits on star formation rates in hosts of ∼300 obscured and unobscured quasars at z < 1. We find that low-ionization forbidden emission lines such as [Ne II] and [Ne III] are likely dominated by quasar ionization and do not provide reliable star formation diagnostics in quasar hosts, while polycyclic aromatic hydrocarbon (PAH) emission features may be suppressed due to the destruction of PAH molecules by the quasar radiation field. While the bolometric luminosities of our sources are dominated by the quasars, the 160 μm fluxes are likely dominated by star formation, but they too should be used with caution. We estimate median star formation rates to be 6–29 M yr−1, with obscured quasars at the high end of this range. This star formation rate is insufficient to explain the observed radio emission from quasars by an order of magnitude, with log (Lradio, obs/Lradio, SF) = 0.6–1.3 depending on quasar type and star formation estimator. Although radio-quiet quasars in our sample lie close to the 8–1000 μm infrared/radio correlation characteristic of the star-forming galaxies, both their infrared emission and their radio emission are dominated by the quasar activity, not by the host galaxy.Peer reviewedFinal Published versio
    corecore