9 research outputs found
DataSheet1_Transcription factor GATA6 promotes migration of human coronary artery smooth muscle cells in vitro.PDF
Vascular smooth muscle cell plasticity plays a pivotal role in the pathophysiology of vascular diseases. Despite compelling evidence demonstrating the importance of transcription factor GATA6 in vascular smooth muscle, the functional role of GATA6 remains poorly understood. The aim of this study was to elucidate the role of GATA6 on cell migration and to gain insight into GATA6-sensitive genes in smooth muscle. We found that overexpression of GATA6 promotes migration of human coronary artery smooth muscle cells in vitro, and that silencing of GATA6 in smooth muscle cells resulted in reduced cellular motility. Furthermore, a complete microarray screen of GATA6-sensitive gene transcription resulted in 739 upregulated and 248 downregulated genes. Pathways enrichment analysis showed involvement of transforming growth factor beta (TGF-β) signaling which was validated by measuring mRNA expression level of several members. Furthermore, master regulators prediction based on microarray data revealed several members of (mitogen activated protein kinase) MAPK pathway as a master regulators, reflecting involvement of MAPK pathway also. Our findings provide further insights into the functional role of GATA6 in vascular smooth muscle and suggest that targeting GATA6 may constitute as a new approach to inhibit vascular smooth muscle migration.</p
MOESM9 of Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
Additional file 9. Reproducibility and absolute quantification
MOESM10 of Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
Additional file 10. Medical examination of the welders. Medical examination of the welders with lower airway symptoms during the previous month, including skin prick test positivity for a standard panel of aeroallergens, methacholine test (MCH) positivity, and lung function (FVC and FEV1 as % of predicted) at the baseline examination before the study. MMP9 concentration (fmol/ÂľL) and lung function (FVC and FEV1 as % of predicted) before and after exposure to welding fume particles (A) or filtered air (B). N/A: no data could be obtained due to missing samples
MOESM3 of Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
Additional file 3. Upstream analysis for observation immediately after exposure and the day after exposure
MOESM2 of Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
Additional file 2. Canonical pathway results of pooled samples. IPA results of pathways found to be significantly induced when proteins that had a ratio ≥ 1.3 or ≤ 0.8 from additional file 1 were analyzed. After exposure = NL2/NL1. Day after exposure = NL3/NL1
MOESM4 of Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
Additional file 4. Flowchart for protein list generation and analyses. A total of 336 proteins were detected with the shotgun analysis. Cutoff criteria were used to minimize labor and the time-consuming analysis of redundant proteins. Mechanism hypotheses were generated with the help of pathway analysis and literature findings
MOESM11 of Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
Additional file 11. The significantly changed proteins found with the Wilcoxon signed rank test showed that these canonical pathways were activated due to welding fume exposure. Positive z-score: the canonical pathway was predicted to be activated. Negative z-score: the canonical pathway was predicted to be deactivated
MOESM8 of Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
Additional file 8. Calibration curves. Calibration curves prepares in nasal lavage matrix: Two sample preparations of the standard curve were made and run during the beginning and the end of the whole runs. They were each injected twice. Calibration curves prepared in MilliQ water matrix: One sample preparation of the standard curve was prepared in MilliQ water as a matrix instead of nasal lavage to confirm that the matrix of the sample was not affecting the quantification of the peptide
Analysis of nanoparticle–protein coronas formed <i>in vitro</i> between nanosized welding particles and nasal lavage proteins
<p>Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UF<sub>WF</sub> and Fe<sub>2</sub>O<sub>3</sub> particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona.</p