13 research outputs found

    Poly(ionic liquid)s having coumarate counter-anions as corrosion inhibitors in acrylic UV coatings

    No full text
    New poly(ionic liquid) based on poly(diallyl dimethylammonium) and coumarate that can act as a corrosion inhibitor into an acrylic UV-cured formulation

    Inkjet-Printed Dual-Mode Electrochromic and Electroluminescent Displays Incorporating Ecofriendly Materials

    No full text
    Displays and indicators are an integral component of everyday electronics. However, the short lifecycle of most applications is currently contributing to the unsustainable growth of electronic waste. In this work, we utilize ecofriendly materials in combination with sustainable processing techniques to fabricate inkjet-printed, ecofriendly dual-mode displays (DMDs). These displays can be used in a reflective mode or an emissive mode by changing between DC and AC operation due to the combination of an electrochromic (EC) and electrochemiluminescent (ECL) layer in a single device. The EC polymer poly­(3,4-ethylenedioxythiophene):poly­(styrene sulfonate) (PEDOT:PSS) serves as the reflective layer, while an ECL gel made of dimethylsulfoxide (DMSO), poly­(lactic-co-glycolic acid) (PLGA), 1-butyl-3-methylimidazoliumbis­(oxalato)­borate (BMIMBOB), and tris­(bipyridine)­ruthenium­(II) chloride (Ru2+(bpy)3Cl2) enables the emissive mode. The final dual-mode devices exhibited their maximum optical power output of 52 mcd/m2 at 4 V and 40 Hz and achieved an EC contrast of 45% and a coloration efficiency of 244 cm2/C at a wavelength of 690 nm. The fabricated devices showed clear readability in dark and light conditions when operated in reflective or emissive modes. This work demonstrates the applicability of ecofriendly and potentially biodegradable materials to reduce the amount of hazardous components in versatile display technologies

    PEDOT Radical Polymer with Synergetic Redox and Electrical Properties

    No full text
    The development of new redox polymers is being boosted by the increasing interest in the area of energy and health. The development of new polymers is needed to further advance new applications or improve the performance of actual devices such as batteries, supercapacitors, or drug delivery systems. Here we show the synthesis and characterization of a new polymer which combines the present most successful conjugated polymer backbone and the most successful redox active side group, i.e., poly­(3,4-ethylenedioxythiophene) (PEDOT), and a nitroxide stable radical. First, a derivative of the 3,4-ethylenedioxythiophene (EDOT) molecule with side nitroxide stable radical group (TEMPO) was synthesized. The electrochemical polymerization of the PEDOT-TEMPO monomer was investigated in detail using cyclic voltammetry, potential step, and constant current methods. Monomer and polymer were characterized by NMR, FTIR, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), electron spin resonance (ESR) spectroscopy, elemental analysis, cyclic voltammetry, and four-point probe conductivity. The new PEDOT-TEMPO radical polymer combines the electronic conductivity of the conjugated polythiophene backbone and redox properties of the nitroxide group. As an example of application, this redox active polymer was used as a conductive binder in lithium ion batteries. Good cycling stability with high Coulombic efficiency and increased cyclability at different rates were obtained using this polymer as a replacement of two ingredients: conductive carbon additive and polymeric binders

    Carrageenans as Sustainable Water-Processable Binders for High-Voltage NMC811 Cathodes

    No full text
    Poly(vinylidene fluoride) (PVDF) is the most common binder for cathode electrodes in lithium-ion batteries. However, PVDF is a fluorinated compound and requires toxic N-methyl-2-pyrrolidone (NMP) as a solvent during the slurry preparation, making the electrode fabrication process environmentally unfriendly. In this study, we propose the use of carrageenan biopolymers as a sustainable source of water-processable binders for high-voltage NMC811 cathodes. Three types of carrageenan (Carr) biopolymers were investigated, with one, two, or three sulfonate groups (SO3–), namely, kappa, iota, and lambda carrageenans, respectively. In addition to the nature of carrageenans, this article also reports the optimization of the cathode formulations, which were prepared by using between 5 wt % of the binder to a lower amount of 2 wt %. Processing of the aqueous slurries and the nature of the binder, in terms of the morphology and electrochemical performance of the electrodes, were also investigated. The Carr binder with 3SO3– groups (3SO3– Carr) exhibited the highest discharge capacities, delivering 133.1 mAh g–1 at 3C and 105.0 mAh g–1 at 5C, which was similar to the organic-based PVDF electrode (136.1 and 108.7 mAh g–1, respectively). Furthermore, 3SO3– Carr reached an outstanding capacity retention of 91% after 90 cycles at 0.5C, which was attributed to a homogeneous NMC811 and a conductive carbon particle dispersion, superior adhesion strength to the current collector (17.3 ± 0.7 N m–1 vs 0.3 ± 0.1 N m–1 for PVDF), and reduced charge-transfer resistance. Postmortem analysis unveiled good preservation of the NMC811 particles, while the 1SO3– Carr and 2SO3– Carr electrodes showed damaged morphologies

    Innovative Strategy for Developing PEDOT Composite Scaffold for Reversible Oxygen Reduction Reaction

    No full text
    Metal–air batteries are an emerging technology with great potential to satisfy the demand for energy in high-consumption applications. However, this technology is still in an early stage, facing significant challenges such as a low cycle life that currently limits its practical use. Poly(3,4-ethylene­dioxythiophene) (PEDOT) conducting polymer has already demonstrated its efficiency as catalyst for oxygen reduction reaction (ORR) discharge as an alternative to traditional expensive and nonsustainable metal catalysts. Apart from that, in most electrochemical processes, three phenomena are needed: redox activity and electronic and ionic conduction. Material morphology is important to maximize the contact area and optimize the 3 mechanisms to obtain high-performance devices. In this work, porous scaffolds of PEDOT–organic ionic plastic crystal (OIPC) are prepared through vapor phase polymerization to be used as porous self-standing cathodes. The scaffolds, based on abundant elements, showed good thermal stability (200 °C), with potential ORR reversible electrocatalytic activity: 60% of Coulombic efficiency in aqueous medium after 200 cycles

    Biobased Acrylic Latexes/Sodium Carboxymethyl Cellulose Aqueous Binders for Lithium-Ion NMC 811 Cathodes

    No full text
    The increasing demands for sustainable energy storage technologies have prompted extensive research in the development of eco-friendly materials for lithium-ion batteries (LIBs). This research article presents the design of biobased latexes, which are fluorine-free and rely on renewable resources, based on isobornyl methacrylate (IBOMA) and 2-octyl acrylate (2OA) to be used as binders in batteries. Three different compositions of latexes were investigated, varying the ratio of IBOMA and 2OA: (1) Poly2OA homopolymer, (2) Poly(2OA0,6-co-IBOMA0,4) random copolymer, and (3) PolyIBOMA homopolymer. The combination of the two monomers provided a balance between rigidity from the hard monomer (IBOMA) and flexibility from the soft one (2OA). The study evaluated the performance of the biobased latexes using sodium carboxymethyl cellulose (CMC) as a thickener and cobinder by fabricating LiNi0.8Mn0.1Co0.1O2 (NMC 811) cathodes. Also, to compare with the state of the art, organic processed PVDF electrodes were prepared. Among aqueous slurries, rheological analysis showed that the CMC + Poly(2OA0,6-co-IBOMA0,4) binder system resulted in the most stable and well-dispersed slurries. Also, the electrodes prepared with this latex demonstrated enhanced adhesion (210 ± 9 N m–1) and reduced cracks compared to other aqueous compositions. Electrochemical characterization revealed that the aqueous processed cathodes using the CMC + Poly(2OA0,6-co-IBOMA0,4) biobased latex displayed higher specific capacities than the control with no latex at high C-rates (100.3 ± 2.1 vs 64.5 ± 0.8 mAh g–1 at 5C) and increased capacity retention after 90 cycles at 0.5C (84% vs 81% for CMC with no latex). Overall, the findings of this study suggest that biobased latexes, specifically the CMC + Poly(2OA0,6-co-IBOMA0,4) composition, are promising as environmentally friendly binders for NMC 811 cathodes, contributing to the broader goal of achieving sustainable energy storage systems

    Water-soluble fluorine-free poly(ionic liquid)borate binders for Li-ion battery cathodes

    Full text link
    The development of efficient, eco-friendly lithium-ion battery (LIB) technologies necessitates alternative binder materials to replace conventional polyvinylidene fluoride (PVDF)
    corecore