287 research outputs found
Time gating of heralded single photons for atomic memories
We demonstrate a method for time gating the standard heralded continuous-
wave (cw) spontaneous parametric down-converted (SPDC) single photon source by
using pulsed pumping of the optical parametric oscillator (OPO) below
threshold. The narrow bandwidth, high purity, high spectral brightness and the
pseudo-deterministic character make the source highly suitable for light-atom
interfaces with atomic memories.Comment: Accepted for publication in Optics Letter
Assessments of macroscopicity for quantum optical states
With the slow but constant progress in the coherent control of quantum
systems, it is now possible to create large quantum superpositions. There has
therefore been an increased interest in quantifying any claims of
macroscopicity. We attempt here to motivate three criteria which we believe
should enter in the assessment of macroscopic quantumness: The number of
quantum fluctuation photons, the purity of the states, and the ease with which
the branches making up the state can be distinguished
Tomography of a displacement photon counter for discrimination of single-rail optical qubits
We investigate the performance of a Kennedy receiver, which is known as a
beneficial tool in optical coherent communications, to the quantum state
discrimination of the two superpositions of vacuum and single photon states
corresponding to the eigenstates in the single-rail encoding of
photonic qubits. We experimentally characterize the Kennedy receiver in
vacuum-single photon two-dimensional space using quantum detector tomography
and evaluate the achievable discrimination error probability from the
reconstructed measurement operators. We furthermore derive the minimum error
rate obtainable with Gaussian transformations and homodyne detection. Our proof
of principle experiment shows that the Kennedy receiver can achieve a
discrimination error surpassing homodyne detection
Architecture and noise analysis of continuous variable quantum gates using two-dimensional cluster states
Due to its unique scalability potential, continuous variable quantum optics
is a promising platform for large scale quantum computing and quantum
simulation. In particular, very large cluster states with a two-dimensional
topology that are suitable for universal quantum computing and quantum
simulation can be readily generated in a deterministic manner, and routes
towards fault-tolerance via bosonic quantum error-correction are known. In this
article we propose a complete measurement-based quantum computing architecture
for the implementation of a universal set of gates on the recently generated
two-dimensional cluster states [1,2]. We analyze the performance of the various
quantum gates that are executed in these cluster states as well as in other
two-dimensional cluster states (the bilayer-square lattice and quad-rail
lattice cluster states [3,4]) by estimating and minimizing the associated
stochastic noise addition as well as the resulting gate error probability. We
compare the four different states and find that, although they all allow for
universal computation, the quad-rail lattice cluster state performs better than
the other three states which all exhibit similar performance
Teleportation of Nonclassical Wave Packets of light
We report on the experimental quantum teleportation of strongly nonclassical
wave packets of light. To perform this full quantum operation while preserving
and retrieving the fragile non-classicality of the input state, we have
developed a broadband, zero-dispersion teleportation apparatus that works in
conjunction with time-resolved state preparation equipment. Our approach brings
within experimental reach a whole new set of hybrid protocols involving
discrete- and continuous-variable techniques in quantum information processing
for optical sciences
High purity bright single photon source
Using cavity-enhanced non-degenerate parametric downconversion, we have built
a frequency tunable source of heralded single photons with a narrow bandwidth
of 8 MHz, making it compatible with atomic quantum memories. The photon state
is 70% pure single photon as characterized by a tomographic measurement and
reconstruction of the quantum state, revealing a clearly negative Wigner
function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz
bandwidth, making it one of the brightest single photon sources available. We
also investigate the correlation function of the down-converted fields using a
combination of two very distinct detection methods; photon counting and
homodyne measurement.Comment: 9 pages, 4 figures; minor changes, added referenc
Super sensitivity and super resolution with quantum teleportation
We propose a method for quantum enhanced phase estimation based on continuous
variable (CV) quantum teleportation. The phase shift probed by a coherent state
can be enhanced by repeatedly teleporting the state back to interact with the
phase shift again using a supply of two-mode squeezed vacuum states. In this
way, both super resolution and super sensitivity can be obtained due to the
coherent addition of the phase shift. The protocol enables Heisenberg limited
sensitivity and super- resolution given sufficiently strong squeezing. The
proposed method could be implemented with current or near-term technology of CV
teleportation.Comment: 5 pagers, 3 figure
Time domain Einstein-Podolsky-Rosen correlation
We experimentally demonstrate creation and characterization of
Einstein-Podolsky-Rosen (EPR) correlation between optical beams in the time
domain. The correlated beams are created with two independent continuous-wave
optical parametric oscillators and a half beam splitter. We define temporal
modes using a square temporal filter with duration and make time-resolved
measurement on the generated state. We observe the correlations between the
relevant conjugate variables in time domain which correspond to the EPR
correlation. Our scheme is extendable to continuous variable quantum
teleportation of a non-Gaussian state defined in the time domain such as a
Schr\"odinger cat-like state.Comment: 4 pages, 4 figure
Hybrid quantum information processing
The development of quantum information processing has traditionally followed
two separate and not immediately connected lines of study. The main line has
focused on the implementation of quantum bit (qubit) based protocols whereas
the other line has been devoted to implementations based on high-dimensional
Gaussian states (such as coherent and squeezed states). The separation has been
driven by the experimental difficulty in interconnecting the standard
technologies of the two lines. However, in recent years, there has been a
significant experimental progress in refining and connecting the technologies
of the two fields which has resulted in the development and experimental
realization of numerous new hybrid protocols. In this Review, we summarize
these recent efforts on hybridizing the two types of schemes based on discrete
and continuous variables.Comment: 13 pages, 6 figure
- …