287 research outputs found

    Time gating of heralded single photons for atomic memories

    Full text link
    We demonstrate a method for time gating the standard heralded continuous- wave (cw) spontaneous parametric down-converted (SPDC) single photon source by using pulsed pumping of the optical parametric oscillator (OPO) below threshold. The narrow bandwidth, high purity, high spectral brightness and the pseudo-deterministic character make the source highly suitable for light-atom interfaces with atomic memories.Comment: Accepted for publication in Optics Letter

    Assessments of macroscopicity for quantum optical states

    Full text link
    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished

    Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    Get PDF
    We investigate the performance of a Kennedy receiver, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the σ^x\hat\sigma_x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the Kennedy receiver in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof of principle experiment shows that the Kennedy receiver can achieve a discrimination error surpassing homodyne detection

    Architecture and noise analysis of continuous variable quantum gates using two-dimensional cluster states

    Full text link
    Due to its unique scalability potential, continuous variable quantum optics is a promising platform for large scale quantum computing and quantum simulation. In particular, very large cluster states with a two-dimensional topology that are suitable for universal quantum computing and quantum simulation can be readily generated in a deterministic manner, and routes towards fault-tolerance via bosonic quantum error-correction are known. In this article we propose a complete measurement-based quantum computing architecture for the implementation of a universal set of gates on the recently generated two-dimensional cluster states [1,2]. We analyze the performance of the various quantum gates that are executed in these cluster states as well as in other two-dimensional cluster states (the bilayer-square lattice and quad-rail lattice cluster states [3,4]) by estimating and minimizing the associated stochastic noise addition as well as the resulting gate error probability. We compare the four different states and find that, although they all allow for universal computation, the quad-rail lattice cluster state performs better than the other three states which all exhibit similar performance

    Teleportation of Nonclassical Wave Packets of light

    Full text link
    We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences

    High purity bright single photon source

    Full text link
    Using cavity-enhanced non-degenerate parametric downconversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement.Comment: 9 pages, 4 figures; minor changes, added referenc

    Super sensitivity and super resolution with quantum teleportation

    Get PDF
    We propose a method for quantum enhanced phase estimation based on continuous variable (CV) quantum teleportation. The phase shift probed by a coherent state can be enhanced by repeatedly teleporting the state back to interact with the phase shift again using a supply of two-mode squeezed vacuum states. In this way, both super resolution and super sensitivity can be obtained due to the coherent addition of the phase shift. The protocol enables Heisenberg limited sensitivity and super- resolution given sufficiently strong squeezing. The proposed method could be implemented with current or near-term technology of CV teleportation.Comment: 5 pagers, 3 figure

    Time domain Einstein-Podolsky-Rosen correlation

    Get PDF
    We experimentally demonstrate creation and characterization of Einstein-Podolsky-Rosen (EPR) correlation between optical beams in the time domain. The correlated beams are created with two independent continuous-wave optical parametric oscillators and a half beam splitter. We define temporal modes using a square temporal filter with duration TT and make time-resolved measurement on the generated state. We observe the correlations between the relevant conjugate variables in time domain which correspond to the EPR correlation. Our scheme is extendable to continuous variable quantum teleportation of a non-Gaussian state defined in the time domain such as a Schr\"odinger cat-like state.Comment: 4 pages, 4 figure

    Hybrid quantum information processing

    Get PDF
    The development of quantum information processing has traditionally followed two separate and not immediately connected lines of study. The main line has focused on the implementation of quantum bit (qubit) based protocols whereas the other line has been devoted to implementations based on high-dimensional Gaussian states (such as coherent and squeezed states). The separation has been driven by the experimental difficulty in interconnecting the standard technologies of the two lines. However, in recent years, there has been a significant experimental progress in refining and connecting the technologies of the two fields which has resulted in the development and experimental realization of numerous new hybrid protocols. In this Review, we summarize these recent efforts on hybridizing the two types of schemes based on discrete and continuous variables.Comment: 13 pages, 6 figure
    corecore