6,122 research outputs found
Gebäude unter den Einwirkungen des Klimawandels
Dies ist ein Poster aus dem REGKLAM-Vorhaben zum Thema "Gebäude unter den Einwirkungen des Klimawandels"
K-Ar Age Values of Bulk Soil Samples and Clay Fractions: Effects of Acid Extraction and Implications for the Origin of Micaceous Clay in Savannah River Site Soils, South Carolina, USA
Understanding how natural Cs, Rb, and K have been redistributed in Savannah River Site (SRS) soils during pedogenesis is important to understanding how radiocesium released to the soils will behave over the long term. In this effort, it is important to distinguish K that has participated in mineral-water reactions from that still residing in primary silicate structures, particularly in the clay fraction. The impact of different degrees of acid extraction on K and radiogenic Ar in bulk soil and in clay from five SRS soil samples has been determined. Strong treatment (50% HNO3, three hours, 100°C) releases K from primary minerals, as shown also by a concomitant release of radiogenic Ar, but a more moderate treatment (6% HNO3, three hours, 80°C) does not release K. K in the clay fraction is mostly nonexchangeable K in remnants of primary mica, and clay K-Ar age values near 300 Ma indicate the mica originated in the Appalachian mountain belt
NASA MSFC hardware in the loop simulations of automatic rendezvous and capture systems
Two complementary hardware-in-the-loop simulation facilities for automatic rendezvous and capture systems at MSFC are described. One, the Flight Robotics Laboratory, uses an 8 DOF overhead manipulator with a work volume of 160 by 40 by 23 feet to evaluate automatic rendezvous algorithms and range/rate sensing systems. The other, the Space Station/Station Operations Mechanism Test Bed, uses a 6 DOF hydraulic table to perform docking and berthing dynamics simulations
Highly polarized alkenes as organocatalysts for the polymerization of lactones and trimethylene carbonate
In this work, the activity of N-heterocyclic olefins
(NHOs), a newly emerging class of organopolymerization catalyst, is investigated to affect the metal-free polymerization of lactones and trimethylene carbonate (TMC). A decisive structure−activity relationship is revealed. While catalysts of the simplest type bearing an exocyclic CH2 moiety polymerize L-lactide (L-LA) and δ-valerolactone (δ-VL) in a non-living and non-quantitative manner, the introduction of methyl substituents on the exocyclic carbon radically changes this behavior. 2-Isopropylidene-1,3,4,5-tetramethylimidazoline is found to be highly active for a range of monomers such as L-LA, δ-VL, ε-caprolactone (ε-CL), and TMC, with quantitative conversion occurring within seconds with catalyst loadings of just 0.2 mol %. The high activity of this NHO further enables the ring-opening polymerization (ROP) of the macrolactone ω-pentadecalactone (PDL). However, this broad applicability is offset by a lack of control over the polymerizations, including side reactions as a consequence of its strong basicity. To overcome this, a saturated, imidazolinium-derived analogue was synthesized and subsequently demonstrated to possess a harnessed reactivity which enables it to polymerize both L-LA and TMC in a controlled manner (ĐM < 1.2). NMR spectroscopic and MALDI-ToF MS experiments highlight the differences in polymerization pathways for 2-methylene-1,3,4,5-tetramethylimidazoline, in which the exocyclic carbon is not substituted, in contrast to 2-isopropylidene-1,3,4,5-tetramethylimidazoline, with the former operating
via its nucleophilicity and the latter acting as a base with enolizable δ-VL
- …