110 research outputs found

    Comparative transcriptomics indicates endogenous differences in detoxification capacity after formic acid treatment between honey bees and varroa mites

    Get PDF
    Formic acid (FA) has been used for decades to control Varroa destructor, one of the most important parasites of the western honey bee, Apis mellifera. The rather unselective molecular mode of action of FA and its possible effects on honeybees have long been a concern of beekeepers, as it has undesirable side effects that affect the health of bee colonies. This study focuses on short-term transcriptomic changes as analysed by RNAseq in both larval and adult honey bees and in mites after FA treatment under applied conditions. Our study aims to identify those genes in honey bees and varroa mites differentially expressed upon a typical FA hive exposure scenario. Five detoxification-related genes were identified with significantly enhanced and one gene with significantly decreased expression under FA exposure. Regulated genes in our test setting included members of various cytochrome P450 subfamilies, a flavin-dependent monooxygenase and a cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH), known to be involved in formate metabolism in mammals. We were able to detect differences in the regulation of detoxification-associated genes between mites and honey bees as well as between the two different developmental stages of the honey bee. Additionally, we detected repressed regulation of Varroa genes involved in cellular respiration, suggesting mitochondrial dysfunction and supporting the current view on the mode of action of FA-inhibition of oxidative phosphorylation. This study shows distinct cellular effects induced by FA on the global transcriptome of both host and parasite in comparison. Our expression data might help to identify possible differences in the affected metabolic pathways and thus make a first contribution to elucidate the mode of detoxification of FA

    Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq

    Get PDF
    Background: The European red mite, Panonychus ulmi, is among the most important mite pests in fruit orchards, where it is controlled primarily by acaricide application. However, the species rapidly develops pesticide resistance, and the elucidation of resistance mechanisms for P. ulmi has not kept pace with insects or with the closely related spider mite Tetranychus urticae. The main reason for this lack of knowledge has been the absence of genomic resources needed to investigate the molecular biology of resistance mechanisms. Results: Here, we provide a comprehensive strand-specific RNA-seq based transcriptome resource for P. ulmi derived from strains susceptible and resistant to the widely used acaricide spirodiclofen. From a de novo assembly of the P. ulmi transcriptome, we manually annotated detoxification enzyme families, target-sites of commonly used acaricides, and horizontally transferred genes implicated in plant-mite interactions and pesticide resistance. In a comparative analysis that incorporated sequences available for Panonychus citri, T. urticae, and insects, we identified radiations for detoxification gene families following the divergence of Panonychus and Tetranychus genera. Finally, we used the replicated RNA-seq data from the spirodiclofen susceptible and resistant strains to describe gene expression changes associated with resistance. A cytochrome P450 monooxygenase, as well as multiple carboxylcholinesterases, were differentially expressed between the susceptible and resistant strains, and provide a molecular entry point for understanding resistance to spirodiclofen, widely used to control P. ulmi populations. Conclusions: The new genomic resources and data that we present in this study for P. ulmi will substantially facilitate molecular studies of underlying mechanisms involved in acaricide resistance

    Characterization of abamectin resistance in Iranian populations of European red mite, Panonychus ulmi Koch (Acari: Tetranychidae)

    Get PDF
    The European red mite, Panonychus ulmi Koch is one of the most important pests in apple orchards and was introduced to Iran by apple seedlings from Europe. The insecticide/acaricide abamectin for example has been used extensively against P. ulmi and some other pests in apple orchards. To evaluate abamectin resistance in field-collected populations of P. ulmi, 12 populations were collected from commercial apple orchards of East Azarbaijan, West Azarbaijan, and Isfahan provinces. The abamectin toxicity was determined by a leaf disc spray method. The LC(50)( )values of abamectin ranged from 0.11 mg a. iL(-1) to 5.50 mg a. i.L-1. All field populations were resistant to abamectin (RR ranged from 11- to 46-fold) in comparing with PSR-TK, a reference susceptible population for abamectin. The Mahabad population was identified as the most resistant population. The glutamate-gated chloride channels (GluCls) are well-known target site of abamectin in mites and it was demonstrated that amino acid substitutions in GluCls can confer abamectin resistance. The partial channels PuGluC11, PuGluC12, and PuGluC13 were sequenced in Mahabad population, but the previously reported point mutations associated with abamectin resistance in Tetranychus urticae Koch were not found. In contrast, the cytochrome P450 monooxygenase inhibitor piperonyl butoxide (PBO) significantly increased abamectin toxicity in Mahabad (synergistic ratio SR= 64), a moderately resistant population, and Shahin Dej (SR = 2) population. Also, pretreatment of triphenylphosphate (TPP) resulted in reduced LC50 values of abamectin in Shahin Dej (SR = 4.79) and Mahabad (SR = 8.91) populations. The second highest synergism ratio (SR = 22.13) against abamectin was observed in the resistant population of Mahabad with the glutathione S-transferase inhibitor diethylmaleate (DEM). Although quantification of activity of detoxification enzymes with model substrates did not support the role of detoxification enzymes, the synergism assays and the lack of target-site resistance suggested that multiple metabolic mechanisms are involved in abamectin resistance

    Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi

    Get PDF
    The European red mite, Panonychus ulmi (Koch), is one of the major pests of apple trees worldwide. Cyclic ketoenol compounds such as spimdiclofen and spiromesifen are frequently used to control phytophagous spider mites in agricultural crops, including P. ulmi on apple trees. Spider mites, however, can rapidly develop resistance against acaricides and, in this study, multiple P. ulmi populations from apple orchards in Iran were monitored for spimdiclofen and spiromesifen resistance. The Urmia and Shahin Dej population showed the highest spirodiclofen resistance ratio (more than 150-fold) compared to the susceptible Ahar population. Toxicity bioassays also revealed the presence of moderate cross-resistance between spiromesifen and spirodiclofen, but not towards the chitin synthase inhibitor etoxazole. As a first step towards elucidating spirodiclofen resistance mechanisms, the role of detoxification enzymes (cytochmme P450 monooxygenases, carboxyl/choline esterases and glutathione 5-transferases) was investigated by in vivo synergism and in vitro enzyme assays. PBO pretreatment synergized spimdiclofen toxicity in the populations of Urmia and Shahin Dej to a higher extent than in the susceptible Ahar population. Furthermore, enzyme activity measurements showed relatively higher activity of detoxifying enzymes in the resistant populations. In conclusion, increased detoxification is most likely underlying spimdiclofen resistance and results in limited cross-resistance to spimmesifen

    Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance : Drosophila and beyond

    Get PDF
    Chemical insecticides are a major tool for the control of many of the world's most damaging arthropod pests. However, their intensive application is often associated with the emergence of resistance, sometimes with serious implications for sustainable pest control. To mitigate failure of insecticide-based control tools, the mechanisms by which insects have evolved resistance must be elucidated. This includes both identification and functional characterization of putative resistance genes and/or mutations. Research on this topic has been greatly facilitated by using powerful genetic model insects like Drosophila melanogaster, and more recently by advances in genome modification technology, notably CRISPR/Cas9. Here, we present the advances that have been made through the application of genome modification technology in insecticide resistance research. The majority of the work conducted in the field to date has made use of genetic tools and resources available in D. melanogaster. This has greatly enhanced our understanding of resistance mechanisms, especially those mediated by insensitivity of the pesticide target-site. We discuss this progress for a series of different insecticide targets, but also report a number of unsuccessful or inconclusive attempts that highlight some inherent limitations of using Drosophila to characterize resistance mechanisms identified in arthropod pests. We also discuss an experimental framework that may circumvent current limitations while retaining the genetic versatility and robustness that Drosophila has to offer. Finally, we describe examples of direct CRISPR/Cas9 use in non-model pest species, an approach that will likely find much wider application in the near future

    Resilience of transfluthrin to oxidative attack by duplicated CYP6P9 variants known to confer pyrethroid resistance in the major malaria mosquito Anopheles funestus

    Get PDF
    Resistance to common pyrethroids, such as deltamethrin and permethrin is widespread in the malaria mosquito Anopheles funestus and mainly conferred by upregulated cytochrome P450 monooxygenases (P450s). In the pyrethroid resistant laboratory strain An. funestus FUMOZ-R the duplicated genes CYP6P9a and CYP6P9b are highly upregulated and have been shown to metabolize various pyrethroids, including deltamethrin and permethrin. Here, we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus using a baculovirus expression system and evaluated the interaction of the multifluorinated benzyl pyrethroid transfluthrin with these enzymes by different approaches. First, by Michaelis-Menten kinetics in a fluorescent probe assay with the model substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC), we showed the inhibition of BOMFC metabolism by increasing concentrations of transfluthrin. Second, we tested the metabolic capacity of recombinantly expressed CYP6P9 variants to degrade transfluthrin utilizing UPLC-MS/MS analysis and detected low depletion rates, explaining the virtual lack of resistance of strain FUMOZ-R to transfluthrin observed in previous studies. However, as both approaches suggested an interaction of CYP6P9 variants with transfluthrin, we analyzed the oxidative metabolic fate and failed to detect hydroxylated transfluthrin, but low amounts of an M-2 transfluthrin metabolite. Based on the detected metabolite we hypothesize oxidative attack of the gem-dimethyl substituted cyclopropyl moiety, resulting in the formation of an allyl cation upon ring opening. In conclusion, these findings support the resilience of transfluthrin to P450-mediated pyrethroid resistance, and thus, reinforces its employment as an important resistance-breaking pyrethroid in resistance management strategies to control the major malaria vector An. funestus

    Point mutations in the voltage-gated sodium channel gene associated with pyrethroid resistance in Iranian populations of the European red mite Panonychus ulmi

    Get PDF
    The European red mite Panonychus ulmi (Koch) is a major pest of apple trees worldwide and causes significant damage to apple orchards in Iran. Pyrethroid insecticides/acaricides, such as fenpropathrin and fenvalerate, are widely used to control P. ulmi, but their long-term use may lead to low efficacy. Earlier studies investigating pyrethroid resistance in closely related mites such as Tetranychus urticae revealed that pyrethroid resistance was associated with point mutations in the voltage-gated sodium channel gene (vgsc). The aim of this study was to investigate the biochemical and molecular mechanisms of fenpropathrin and fenvalerate resistance in Iranian populations of P. ulmi. Pyrethroid toxicity bioassays were carried out on different P. ulmi field populations. Marand (resistance ratio, RR = 149), Maracieh (RR = 90) and Mianeh2 (RR = 71) populations exhibited high levels of resistance to fenpropathrin, compared to a susceptible field population (Shahin Dej). Resistance was also observed for fenvalerate with resistance ratio's ranging from 2- to 20-fold. Synergism experiments and enzyme activity assays predicted a minor role for classical detoxification enzymes. In contrast, two amino acid substitutions in the VGSC, L1024V and F15381, that were previously shown to confer pyrethroid resistance, were detected in all three resistant P. ulmi populations and point towards target-site insensitivity as the most likely resistance mechanism. Furthermore, sequencing after cloning of vgsc fragments from single haploid males revealed the presence of multiple copies of vgsc in a highly resistant strain. The link between resistance mutations and vgsc copy number variation should be the subject of future study, as this might be used to develop molecular markers for monitoring pyrethroid resistance of P. ulmi in the field
    corecore