4,450 research outputs found

    Brown Dwarf Jets: Investigating the Universality of Jet Launching Mechanisms at the Lowest Masses

    Get PDF
    Recently it has become apparent that proto-stellar-like outflow activity extends to the brown dwarf (BD) mass regime. While the presence of accretion appears to be the common ingredient in all objects known to drive jets fundamental questions remain unanswered. The more prominent being the exact mechanism by which jets are launched, and whether this mechanism remains universal among such a diversity of sources and scales. To address these questions we have been investigating outflow activity in a sample of protostellar objects that differ considerably in mass and mass accretion rate. Central to this is our study of brown dwarf jets. To date Classical T Tauri stars (CTTS) have offered us the best touchstone for decoding the launching mechanism. Here we shall summarise what is understood so far of BD jets and the important constraints observations can place on models. We will focus on the comparison between jets driven by objects with central mass < 0.1M \odot and those driven by CTTSs. In particular we wish to understand how the the ratio of the mass outflow to accretion rate compares to what has been measured for CTTSs.Comment: Proceedings of IAU meeting 275, "Jets at All Scales

    Exploring Brown Dwarf Disks

    Get PDF
    We discuss the spectral energy distribution of three very low mass objects in Chamaeleon I for which ground-based spectroscopy and photometry as well as ISO measurements in the mid-infrared are available (Comeron et al. 2000; Persi et al. 2000). One of these stars (Cha Halpha1) is a bona-fide brown dwarf, with mass 0.04-0.05 Msun. We show that the observed emission is very well described by models of circumstellar disks identical to those associated to T Tauri stars, scaled down to keep the ratio of the disk-to-star mass constant and to the appropriate stellar parameters. This result provides a first indication that the formation mechanism of T Tauri stars (via core contraction and formation of an accretion disk) extends to objects in the brown dwarf mass range.Comment: 4 pages, 4 figures, A&A Letters in pres

    Diamonds in HD 97048

    Full text link
    We present adaptive optics high angular resolution (\sim0\farcs1) spectroscopic observations in the 3 μ\mum region of the Herbig Ae/Be star HD 97048. For the first time, we spatially resolve the emission in the diamond features at 3.43 and 3.53 μ\mum and in the adjacent continuum. Using both the intensity profiles along the slit and reconstructed two-dimensional images of the object, we derive full-width at half-maximum sizes consistent with the predictions for a circumstellar disk seen pole-on. The diamond emission originates in the inner region (R15R \lesssim 15 AU) of the disk.Comment: ApJLetter, in pres

    The Herschel view of circumstellar discs: a multi-wavelength study of Chamaeleon I

    Get PDF
    We present the results of a multi-wavelength study of circumstellar discs around 44 young stellar objects in the 3 Myr old nearby Chamaeleon I star-forming region. In particular, we explore the far-infrared/submm regime using Herschel fluxes. We show that Herschel fluxes at 160-500μ\,\mum can be used to derive robust estimates of the disc mass. The median disc mass is 0.005MM_{\odot} for a sample of 28 Class IIs and 0.006MM_{\odot} for 6 transition disks (TDs). The fraction of objects in Chamaeleon-I with at least the `minimum mass solar nebula' is 2-7%. This is consistent with previously published results for Taurus, IC348, ρ\rho Oph. Diagrams of spectral slopes show the effect of specific evolutionary processes in circumstellar discs. Class II objects show a wide scatter that can be explained by dust settling. We identify a continuous trend from Class II to TDs. Including Herschel fluxes in this type of analysis highlights the diversity of TDs. We find that TDs are not significantly different to Class II discs in terms of far-infrared luminosity, disc mass or degree of dust settling. This indicates that inner dust clearing occurs independently from other evolutionary processes in the discs.Comment: 16 pages, 13 figures. Accepted for publication in MNRA

    Spatially resolved PAH emission in the inner disks of Herbig Ae/Be stars

    Full text link
    We present adaptive optics high angular resolution (\sim0.1\arcsec) spectroscopic observations in the 3 \um region of eight well known Herbig Ae/Be stars with circumstellar disks. We detect the aromatic emission feature at 3.3 \um for four out of six of our objects with flared disks (HD 169142, HD 97048, HD 100453, HD 100546), some weaker additional features at 3.4 and 3.46 μ\mum and nanodiamond features at 3.43 and 3.53 \um in two of our flared object (HD 100546 and HD 97048 respectively). We also detect hydrogen recombination line at 3.74 \um in practically all objects. The emission in the polycyclic aromatic hydrocarbons (PAHs) feature at 3.3 \um, additional and nanodiamond features in the 3.4-3.5 \um region is, for the first time, spatially resolved in all the sources where the features are detected. The full-width at half-maximum sizes that we derive are typical of emission arising in a circumstellar disk. On the other hand, the continuum emission is unresolved, with the exception of HD 97048 where it is marginally resolved. We compare the observed spatial distribution of the 3.3 μ\mum PAH feature and the adjacent continuum to the predictions of a disk model that includes transiently heated small grains and PAHs in addition to large grains in thermal equilibrium \cite[]{habart2004a}. The model predicts that, as observed, the 3.3 μ\mum PAH emission feature is significantly broader than that of the adjacent continuum and that about 50% of its integrated intensity comes from a radius R<R< 30 AU. We find that the predicted brightness profiles reproduce very well the observed ones. This proves beyond doubt that the energetic 3.3 μ\mum PAH emission feature takes its origin in the inner disk regions.Comment: 7 figures, accepted to A&

    X-Shooter study of accretion in ρ\rho-Ophiucus: very low-mass stars and brown dwarfs

    Get PDF
    We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of Macc with M* when comparing low-mass stars and BDs. Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in some of our recent works in other star-forming regions, and no significant differences in Macc due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the Macc-M* correlation confirms that Macc in the literature based on uncertain photospheric parameters and single accretion indicators, such as the Ha width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the photospheric and accretion properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract shortened to fit arXiv constraint

    Accretion in the Rho-Oph pre-main sequence stars

    Full text link
    The aim of this paper is to provide a measurement of the mass accretion rate in a large, complete sample of objects in the core of the star forming region Rho-Oph. The sample includes most of the objects (104 out of 111) with evidence of a circumstellar disk from mid-infrared photometry; it covers a stellar mass range from about 0.03 to 3 Msun and it is complete to a limiting mass of ~0.05 Msun. We used J and K-band spectra to derive the mass accretion rate of each object from the intensity of the hydrogen recombination lines, Pab or Brg. For comparison, we also obtained similar spectra of 35 diskless objects. The results show that emission in these lines is only seen in stars with disks, and can be used as an indicator of accretion. However, the converse does not hold, as about 50% of our disk objects do not have detectable line emission. The measured accretion rates show a strong correlation with the mass of the central object (Macc ~ Mstar^1.8+-0.2) and a large spread, of two orders of magnitude at least, for any interval of Mstar. A comparison with existing data for Taurus shows that the objects in the two regions have similar behaviour, at least for objects more massive than ~0.1Msun. The implications of these results are briefly discussed.Comment: A&A in press, 16 pages including tables, 5 figure
    corecore