16,952 research outputs found
Effects of External Loads on Human Head Movement Control Systems
The central and reflexive control strategies underlying movements were elucidated by studying the effects of external loads on human head movement control systems. Some experimental results are presented on dynamic changes weigh the addition of aviation helmet (SPH4) and lead weights (6 kg). Intended time-optimal movements, their dynamics and electromyographic activity of neck muscles in normal movements, and also in movements made with external weights applied to the head were measured. It was observed that, when the external loads were added, the subject went through complex adapting processes and the head movement trajectory and its derivatives reached steady conditions only after transient adapting period. The steady adapted state was reached after 15 to 20 seconds (i.e., 5 to 6 movements)
Model simulation studies to clarify the effect on saccadic eye movements of initial condition velocities set by the Vestibular Ocular Reflex (VOR)
Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals
Extended nonlocal chiral-quark model for the heavy-light quark systems
In this talk, we report the recent progress on constructing a
phenomenological effective model for the heavy-light quark systems, which
consist of (u,d,s,c,b) quarks, i.e. extended nonlocal chiral-quark model
(ExNLChQM). We compute the heavy-meson weak-decay constants to verify the
validity of the model. From the numerical results, it turns out that (f_D, f_B,
f_{D_s}, f_{B_s})=(207.54,208.13,262.56,262.39) MeV. These values are in
relatively good agreement with experimental data and various theoretical
estimations.Comment: 3 pages, 4 figures, Talk given at the 20th International IUPAP
Conference on Few-Body Problems in Physics (FB20), 20~25 August 2012,
Fukuoka, Japa
Free Energy Approach to the Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters
The freezing of metal nanoclusters such as gold, silver, and copper exhibits
a novel structural evolution. The formation of the icosahedral (Ih) structure
is dominant despite its energetic metastability. This important phenomenon,
hitherto not understood, is studied by calculating free energies of gold
nanoclusters. The structural transition barriers have been determined by using
the umbrella sampling technique combined with molecular dynamics simulations.
Our calculations show that the formation of Ih gold nanoclusters is attributed
to the lower free energy barrier from the liquid to the Ih phases compared to
the barrier from the liquid to the face-centered-cubic crystal phases
Inverse velocity statistics in two dimensional turbulence
We present a numerical study of two-dimensional turbulent flows in the
enstrophy cascade regime, with different large-scale forcings and energy sinks.
In particular, we study the statistics of more-than-differentiable velocity
fluctuations by means of two recently introduced sets of statistical
estimators, namely {\it inverse statistics} and {\it second order differences}.
We show that the 2D turbulent velocity field, , cannot be simply
characterized by its spectrum behavior, . There
exists a whole set of exponents associated to the non-trivial smooth
fluctuations of the velocity field at all scales. We also present a numerical
investigation of the temporal properties of measured in different
spatial locations.Comment: 9 pages, 12 figure
Pairing Reentrance Phenomenon in Heated Rotating Nuclei in the Shell Model Monte Carlo Approach
Rotational motion of heated 72-Ge is studied within the microscopic Shell
Model Monte Carlo approach. We investigate the the angular momentum alignment
and nuclear pairing correlations associated with J-pi Cooper pairs as a
function of the rotational frequency and temperature. The reentrance of pairing
correlations with temperature is predicted at high rotational frequencies. It
manifests itself through the anomalous behavior of specific heat and level
density.Comment: 4 pages; 4 figure
- …