73 research outputs found

    Ubiquitination accomplished: E1 and E2 enzymes were not necessary

    Get PDF
    Qiu et al. (2016) show that a mono-ADP-ribosyltransferase, SdeA, from Legionella pneumophila catalyzes ADP-ribosylation of ubiquitin, allowing SdeA to modify substrate with ubiquitin in the absence of E1 and E2 enzymes

    PRINCIPLES OF COMPLEX POLYUBIQUITIN SIGNALING, THE STRUCTURAL BASIS FOR UBIQUITIN-UBISTATIN INTERACTIONS, AND NOVEL ASSAYS FOR THE CHARACTERIZATION OF DEUBIQUITINASES

    Get PDF
    Ubiquitination is the most versatile and is certainly one of the most difficult post-translation modifications to understand in eukaryotic life. In the process of ubiquitination the C-terminus of ubiquitin (Ub), a small 8.65 kDa protein is covalently attached to εNH2 groups of lysine side chains on target proteins. Once attached, additional Ubs can be added to the original Ub at eight unique linkage sites (M1, K6, K11, K27, K29, K33, K48, or K63) to form polyUb chains. This internal Ub-Ub linkage dictates the structural conformation of the polyUb chain, which in turn governs the receptors that can recognize a given chain. PolyUb chains were thought to be homogeneously linked until very recently when mixed linkage polyUb chains were detected on several cellular pathways. This observation implied that instead of having just eight distinct polyUb signals, there were now potentially quadrillions of unique chains. The results presented within represent the first in depth studies of mixed linkage polyUb chains, focusing on the structural impact of linkage mixing. For mixed K48 and K63 linked chains the findings support that their individual linkage properties are preserved regardless of linkage mixing. However, simulations for mixed linkage chains containing different linkages imply that many novel polyUb signals are possible. The ubiquitin-proteasome pathway is the primary mechanism to degrade short lived proteins in the cell and has also emerged as a top therapeutic target. Ubistatins, a class of small molecules bring about the same effects as existing proteasome inhibitor drugs by directly binding the polyUb chain. However, virtually nothing is known about the structural properties for any ubistatin/Ub complex. Here is provided the first structure of a ubistatin/Ub complex along with data that overwhelmingly validates the structure. Other important factors regarding the ubistatin/Ub interaction including the stoichiometry and dual hydrophobic / electrostatic binding mechanism are also uncovered. Proteomic analysis of polyUb conjugates has been limited to determining which linkage types are present. A novel method for K63 linked polyUb conjugates, which can measure consecutive K63 linkages is described here. This method allows the proteomics community to gain unprecedented information on cellular pathways utilizing K63 linkages

    A general strategy for discovery of inhibitors and activators of RING and U-box E3 ligases with ubiquitin variants

    Get PDF
    RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∌Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∌Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes

    The rejuvenating power of the Buena Vista Social Club

    Get PDF
    26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes

    Structure of UBE2K-Ub/E3/polyUb reveals mechanisms of K48-linked Ub chain extension

    Get PDF
    Ubiquitin (Ub) chain types govern distinct biological processes. K48-linked polyUb chains target substrates for proteasomal degradation, but the mechanism of Ub chain synthesis remains elusive due to the transient nature of Ub-handover. Here, we present the structure of a chemically trapped complex of E2 UBE2K covalently linked to donor Ub and acceptor K48-linked di-Ub, primed for K48-linked Ub chain synthesis by a RING E3. The structure reveals the basis for acceptor Ub recognition by UBE2K active site residues and the C-terminal Ub-associated (UBA) domain to impart K48-linked Ub specificity and catalysis. Furthermore, the structure unveils multiple Ub binding surfaces on the UBA domain that allow distinct binding modes for K48-linked and K63-linked Ub chains. This multivalent Ub binding feature serves to recruit UBE2K to ubiquitinated substrates to overcome weak acceptor Ub affinity and thereby promote chain elongation. These findings elucidate the mechanism of processive K48-linked polyUb chain formation by UBE2K

    Mechanism of degrader-targeted protein ubiquitinability

    Get PDF
    Small-molecule degraders of disease-driving proteins offer a clinically proven modality with enhanced therapeutic efficacy and potential to tackle previously undrugged targets. Stable and long-lived degrader-mediated ternary complexes drive fast and profound target degradation; however, the mechanisms by which they affect target ubiquitination remain elusive. Here, we show cryo-EM structures of the VHL Cullin 2 RING E3 ligase with the degrader MZ1 directing target protein Brd4 BD2 toward UBE2R1-ubiquitin, and Lys 456 at optimal positioning for nucleophilic attack. In vitro ubiquitination and mass spectrometry illuminate a patch of favorably ubiquitinable lysines on one face of Brd4 BD2, with cellular degradation and ubiquitinomics confirming the importance of Lys 456 and nearby Lys 368/Lys 445, identifying the “ubiquitination zone.” Our results demonstrate the proficiency of MZ1 in positioning the substrate for catalysis, the favorability of Brd4 BD2 for ubiquitination by UBE2R1, and the flexibility of CRL2 for capturing suboptimal lysines. We propose a model for ubiquitinability of degrader-recruited targets, providing a mechanistic blueprint for further rational drug design.</p

    Design of a Cereblon construct for crystallographic and biophysical studies of protein degraders

    Get PDF
    The ubiquitin E3 ligase cereblon (CRBN) is the target of therapeutic drugs thalidomide and lenalidomide and is recruited by most targeted protein degraders (PROTACs and molecular glues) in clinical development. Biophysical and structural investigation of CRBN has been limited by current constructs that either require co-expression with the adaptor DDB1 or inadequately represent full-length protein, with high-resolution structures of degrader ternary complexes remaining rare. We present the design of CRBN midi, a construct that readily expresses from E. coli with high yields as soluble, stable protein without DDB1. We benchmark CRBN midi for wild-type functionality through a suite of biophysical techniques and solve high-resolution co-crystal structures of its binary and ternary complexes with degraders. We qualify CRBN midi as an enabling tool to accelerate structure-based discovery of the next generation of CRBN based therapeutics.</p

    Targeted protein degradation via intramolecular bivalent glues

    Get PDF
    Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)—bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target 1–4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change ‘glues’ BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target–ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4–IBG1–DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.</p

    Targeted protein degradation via intramolecular bivalent glues

    Get PDF
    Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)—bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target 1–4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change ‘glues’ BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target–ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4–IBG1–DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.</p

    Extended ubiquitin species are protein-based DUB inhibitors

    Get PDF
    A frame-shift mutation in the transcript of the ubiquitin-B gene leads to a C-terminally extended ubiquitin, UBB+1. UBB+1 has been considered to inhibit proteasomes, and as such to be the underlying cause for toxic protein buildup correlated with certain neuropathological conditions. We demonstrated that expression of extended ubiquitin variants led to accumulation of heterogeneously-linked polyubiquitin conjugates indicating a pervasive effect on ubiquitin-dependent turnover. 20S proteasomes selectively proteolysed ubiquitin extensions, yet no evidence for inhibition of 26S holoenzymes was found. However, among susceptible targets for inhibition was Ubp6, the primary enzyme responsible for disassembly of lysine-48 linkages at 26S proteasomes. Processing of lysine-48 and lysine-63 linkages by other deubiquitinating enzymes (DUBs) was also inhibited. Disruption of ubiquitin-dependent degradation by extended ubiquitin variants may therefore be attributed to their inhibitory effect on select DUBs, thus shifting research efforts related to protein accumulation in neurodegenerative processes from proteasomes to DUBs
    • 

    corecore