54 research outputs found

    Selective Effects of Emi1 Depletion in Cancer

    Get PDF
    Background: To improve the effectiveness of chemo- and radiotherapy only in cancer tissue is important for avoiding side effects. Results: Emi1 depletion enhanced the sensitivity of anticancer reagents and X-ray irradiation in cancer cells. Conclusion: Emi1 siRNA would be a useful new modality for enhancing the effect of chemo- and radiotherapy in various tumors. Significance: This work provides new insights regarding synergistic effect of Emi1 knockdown in combination therapies

    Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites

    Get PDF
    The p300 and CBP histone acetyltransferases are recruited to DNA double-strand break (DSB) sites where they induce histone acetylation, thereby influencing the chromatin structure and DNA repair process. Whether p300/CBP at DSB sites also acetylate non-histone proteins, and how their acetylation affects DSB repair, remain unknown. Here we show that p300/CBP acetylate RAD52, a human homologous recombination (HR) DNA repair protein, at DSB sites. Using in vitro acetylated RAD52, we identified 13 potential acetylation sites in RAD52 by a mass spectrometry analysis. An immunofluorescence microscopy analysis revealed that RAD52 acetylation at DSBs sites is counteracted by SIRT2- and SIRT3-mediated deacetylation, and that non-acetylated RAD52 initially accumulates at DSB sites, but dissociates prematurely from them. In the absence of RAD52 acetylation, RAD51, which plays a central role in HR, also dissociates prematurely from DSB sites, and hence HR is impaired. Furthermore, inhibition of ataxia telangiectasia mutated (ATM) protein by siRNA or inhibitor treatment demonstrated that the acetylation of RAD52 at DSB sites is dependent on the ATM protein kinase activity, through the formation of RAD52, p300/CBP, SIRT2, and SIRT3 foci at DSB sites. Our findings clarify the importance of RAD52 acetylation in HR and its underlying mechanism

    Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays.

    No full text
    Purpose: To obtain human glioblastoma cells A172 expressing stem cell-related protein and comparison of radiosensitivity in these cells with X-rays and carbon beam. Methods: Human monolayer-type A172 glioblastoma cells were maintained in normal medium with 10% bovine serum. In order to obtain sphere-type A172 cells the medium was replaced with serum-free medium supplemented with growth factors. Both types of A172 cells were irradiated with either X-rays or carbon ion beams and their radiosensitivity was evaluated. Results: Serum-free medium induced expression of stem cell-related proteins in A172 cells along with the neurosphere-like appearance. These sphere-type cells were found resistant to both X-rays and carbon ion beams. Phosphorylation of histone H2A family member X persisted for a longer period in the cells exposed to carbon ion beams than in those exposed to X-rays and it disappeared quicker in the sphere type than in the monolayer type. Relative radioresistance of the sphere type cells was smaller for carbon ion beams than for X-rays. Conclusions: We demonstrated that glioblastoma A172 cells with induced stem cell-related proteins turned resistant to irradiation. Accelerated heavy ion particles may have advantage over X-rays in overcoming the tumor resistance due to cell stemness

    Targeted cancer cell ablation in mice by an α-particle-emitting astatine-211-labeled antibody against major histocompatibility complex class I chain-related protein A and B

    No full text
    Major histocompatibility complex class I chain-related protein A and B (MICA/B) are ligands of the immune receptor, natural-killer group 2 member D. MICA/B expression is often found in several types of cancer but is restricted in normal tissues. Here, we show that an α-particle emitting astatine-211 (211At)-labeled antibody targeting MICA/B (211At-anti MICA/B Ab) efficiently ablates cancer cells in vitro and in vivo. We generated 211At-anti MICA/B Ab, an anti-MICA/B antibody conjugated with a highly cytotoxic α-particle emitting radionuclide 211At. 211At-anti MICA/B Ab binds to human osteosarcoma SaOS2 and U2OS cells that exhibit high levels of MICA/B expression and efficiently kills those cells in vitro. Biodistribution analysis using xenograft mouse models of HCT116 p53-/- positive for MICA/B expression, showed increased 211At in the xenografts for up to 22 h after injection as time proceeded. A single dose of 211At-anti MICA/B Ab (1 MBq) showed significant reduction in the tumor growth rate of HCT116 p53-/- xenografts compared to 211At-labeled mouse IgG (1 MBq) at 21 days after injection. No body weight loss and erythrocytopenia was evident in mice that received 211At-anti MICA/B. Leukocytopenia and thrombocytopenia were observed within a week after 211At-anti MICA/B injection, but counts of red blood cells and platelets were recovered to control levels at about 3-4 weeks after injection. Taken together, these data strongly demonstrate that targeted α-particle therapy using 211At-anti-MICA/B Ab emitting highly cytotoxic a-particles is a potential new therapeutic option for several types of cancer

    Pre-exposure to ionizing radiation stimulates DNA double strand break end resection, promoting the use of homologous recombination repair.

    No full text
    The choice of DNA double strand break (DSB) repair pathway is determined at the stage of DSB end resection. Resection was proposed to control the balance between the two major DSB repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Here, we examined the regulation of DSB repair pathway choice at two-ended DSBs following ionizing radiation (IR) in G2 phase of the cell cycle. We found that cells pre-exposed to low-dose IR preferred to undergo HR following challenge IR in G2, whereas NHEJ repair kinetics in G1 were not affected by pre-IR treatment. Consistent with the increase in HR usage, the challenge IR induced Replication protein A (RPA) foci formation and RPA phosphorylation, a marker of resection, were enhanced by pre-IR. However, neither major DNA damage signals nor the status of core NHEJ proteins, which influence the choice of repair pathway, was significantly altered in pre-IR treated cells. Moreover, the increase in usage of HR due to pre-IR exposure was prevented by treatment with ATM inhibitor during the incubation period between pre-IR and challenge IR. Taken together, the results of our study suggest that the ATM-dependent damage response after pre-IR changes the cellular environment, possibly by regulating gene expression or post-transcriptional modifications in a manner that promotes resection

    VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation.

    No full text
    High linear energy transfer (LET) radiation such as carbon ion particles is successfully used for treatment of solid tumors. The reason why high LET radiation accomplishes greater tumor-killing than X-rays is still not completely understood. One factor would be the clustered or complex-type DNA damages. We previously reported that complex DNA double-strand breaks produced by high LET radiation enhanced DNA end resection, and this could lead to higher kinase activity of ATR protein recruited to RPA-coated single-stranded DNA. Although the effect of ATR inhibition on cells exposed to low LET gamma-rays has recently been reported, little is known regarding the effect of ATR inhibitor on cells treated with high LET radiation. The purpose of this study is to investigate the effects of the ATR inhibitor VE-821 in human tumor and normal cells irradiated with high LET carbon ions
    corecore