2 research outputs found

    AC Measurements Using Organic Electrochemical Transistors for Accurate Sensing

    No full text
    Organic electrochemical transistors (OECTs) have been successfully employed for a variety of applications , especially chemical and biological sensing. Although the device response to analytes can be directly monitored by measuring steady-state channel currents of the devices, it is challenging to obtain stable signals with high signal-to-noise ratios. In this work, we developed a novel method for electrochemical sensing by measuring both the transconductance and the phase of the AC channel current for the first time. Then we successfully realized highly sensitive ion strength sensors and dopamine sensors based on the AC method. Our results indicate that the AC method is more sensitive than typical DC methods and can provide more stable data in sensing applications. Considering that the sensors can be conveniently integrated with AC circuits, this technology is expected to find broad applications in the future

    Synthesis of High-Crystallinity DPP Polymers with Balanced Electron and Hole Mobility

    No full text
    We review the Stille coupling synthesis of P­(DPP2OD-T) (Poly­[[2,5-di­(2-octyldodecyl)­pyrrolo­[3,4-<i>c</i>]­pyrrole-1,4­(2<i>H</i>,5<i>H</i>)-dione-3,6-diyl]-<i>alt</i>-[2,2′:5′,2″-terthiophene-5,5″-diyl]]) and show that high-quality, high molecular weight polymer chains are already obtained after as little as 15 min of reaction time. The results of UV–vis spectroscopy, grazing incidence wide-angle X-ray scattering (GIWAXS), and atomic force microscopy show that longer reaction times are unnecessary and do not produce any improvement in film quality. We achieve the best charge transport properties with polymer batches obtained from short reaction times and demonstrate that the catalyst washing step is responsible for the introduction of charge-trapping sites for both holes and electrons. These trap sites decrease the charge injection efficiency, strongly reducing the measured currents. The careful tuning of the synthesis allows us to reduce the reaction time by more than 100 times, achieving a more environmentally friendly, less costly process that leads to high and balanced hole and electron transport, the latter being the best reported for an isotropic, spin-coated DPP polymer
    corecore