95 research outputs found

    Capture of manufacturing uncertainty in turbine blades through probabilistic techniques

    No full text
    Efficient designing of the turbine blades is critical to the performance of an aircraft engine. An area of significant research interest is the capture of manufacturing uncertainty in the shapes of these turbine blades. The available data used for estimation of this manufacturing uncertainty inevitably contains the effects of measurement error/noise. In the present work, we propose the application of Principal Component Analysis (PCA) for de-noising the measurement data and quantifying the underlying manufacturing uncertainty. Once the PCA is performed, a method for dimensionality reduction has been proposed which utilizes prior information available on the variance of measurement error for different measurement types. Numerical studies indicate that approximately 82% of the variation in the measurements from their design values is accounted for by the manufacturing uncertainty, while the remaining 18% variation is filtered out as measurement error

    Sparse random Fourier features based interatomic potentials for high entropy alloys

    Full text link
    Computational modeling of high entropy alloys (HEA) is challenging given the scalability issues of Density functional theory (DFT) and the non-availability of Interatomic potentials (IP) for molecular dynamics simulations (MD). This work presents a computationally efficient IP for modeling complex elemental interactions present in HEAs. The proposed random features-based IP can accurately model melting behaviour along with various process-related defects. The disordering of atoms during the melting process was simulated. Predicted atomic forces are within 0.08 eV/\unicode{xC5} of corresponding DFT forces. MD simulations predictions of mechanical and thermal properties are within 7%\% of the DFT values. High-temperature self-diffusion in the alloy system was investigated using the IP. A novel sparse model is also proposed which reduces the computational cost by 94%\% without compromising on the force prediction accuracy

    Hybridization of stochastic reduced basis methods with polynomial chaos expansions

    No full text
    We propose a hybrid formulation combining stochastic reduced basis methods with polynomial chaos expansions for solving linear random algebraic equations arising from discretization of stochastic partial differential equations. Our objective is to generalize stochastic reduced basis projection schemes to non-Gaussian uncertainty models and simplify the implementation of higher-order approximations. We employ basis vectors spanning the preconditioned stochastic Krylov subspace to represent the solution process. In the present formulation, the polynomial chaos decomposition technique is used to represent the stochastic basis vectors in terms of multidimensional Hermite polynomials. The Galerkin projection scheme is then employed to compute the undetermined coefficients in the reduced basis approximation. We present numerical studies on a linear structural problem where the Youngs modulus is represented using Gaussian as well as lognormal models to illustrate the performance of the hybrid stochastic reduced basis projection scheme. Comparison studies with the spectral stochastic finite element method suggest that the proposed hybrid formulation gives results of comparable accuracy at a lower computational cost
    corecore