51 research outputs found

    Interplay between Coherence and Incoherence in Multi-Soliton Complexes

    Full text link
    We analyze photo-refractive incoherent soliton beams and their interactions in Kerr-like nonlinear media. The field in each of M incoherently interacting components is calculated using an integrable set of coupled nonlinear Schrodinger equations. In particular, we obtain a general N-soliton solution, describing propagation of multi-soliton complexes and their collisions. The analysis shows that the evolution of such higher-order soliton beams is determined by coherent and incoherent contributions from fundamental solitons. Common features and differences between these internal interactions are revealed and illustrated by numerical examples.Comment: 4 pages, 3 figures; submitted to Physical Revie

    Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation

    Get PDF
    Finite-dimensional dynamical models for solitons of the cubic-quintic complex Ginzburg-Landau equation CGLE are derived. The models describe the evolution of the pulse parameters, such as the maximum amplitude, pulse width, and chirp. A clear correspondence between attractors of the finite-dimensional dynamical systems and localized waves of the continuous dissipative system is demonstrated. It is shown that stationary solitons of the CGLE correspond to fixed points, while pulsating solitons are associated with stable limit cycles. The models show that a transformation from a stationary soliton to a pulsating soliton is the result of a Hopf bifurcation in the reduced dynamical system. The appearance of moving fronts kinks in the CGLE is related to the loss of stability of the limit cycles. Bifurcation boundaries and pulse behavior in the regions between the boundaries, for a wide range of system parameters, are found from analysis of the reduced dynamical models. We also provide a comparison between various models and their correspondence to the exact results

    Intensity limits for stationary and interacting multi-soliton complexes

    Full text link
    We obtain an accurate estimate for the peak intensities of multi-soliton complexes for a Kerr-type nonlinearity in the (1+1) - dimension problem. Using exact analytical solutions of the integrable set of nonlinear Schrodinger equations, we establish a rigorous relationship between the eigenvalues of incoherently-coupled fundamental solitons and the range of admissible intensities. A clear geometrical interpretation of this effect is given.Comment: 3 pages, 3 figure

    Soliton X-junctions with controllable transmission

    Full text link
    We propose new planar X-junctions and multi-port devices written by spatial solitons, which are composed of two (or more) nonlinearly coupled components in Kerr-type media. Such devices have no radiation losses at a given wavelength. We demonstrate that, for the same relative angle between the channels of the X-junctions, one can vary the transmission coefficients into the output channels by adjusting the polarizations of multi-component solitons. We determine analytically the transmission properties and suggest two types of experimental embodiments of the proposed device.Comment: 3 pages, 2 figure

    Spectral properties of the Peregrine soliton observed in a water wave tank

    Get PDF
    The Peregrine soliton, which is commonly considered to be a prototype of a rogue wave in deep water, is observed and measured in a wave tank. Using the measured data of water elevation, we calculated the spectra of the Peregrine soliton and confirmed that they have triangular shapes, in accordance with the theory

    Multisoliton complexes in a sea of radiation modes

    Full text link
    We derive exact analytical solutions describing multi-soliton complexes and their interactions on top of a multi-component background in media with self-focusing or self-defocusing Kerr-like nonlinearities. These results are illustrated by numerical examples which demonstrate soliton collisions and field decomposition between localized and radiation modes.Comment: 7 pages, 7 figure

    Rogue waves of the Sasa-Satsuma equation in a chaotic wave field

    Get PDF
    We study the properties of the chaotic wave fields generated in the frame of the Sasa-Satsuma equation (SSE). Modulation instability results in a chaotic pattern of small-scale filaments with a free parameter - the propagation constant k. The average velocity of the filaments is approximately given by the group velocity calculated from the dispersion relation for the plane-wave solution. Remarkably, our results reveal the reason for the skewed profile of the exact SSE rogue-wave solutions, which was one of their distinctive unexplained features. We have also calculated the probability density functions for various values of the propagation constant k, showing that probability of appearance of rogue waves depends on k

    Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model

    Get PDF
    Being considered as a prototype for description of oceanic rogue waves, the Peregrine breather solution of the nonlinear Schrödinger equation has been recently observed and intensely investigated experimentally in particular within the context of water

    Hydrodynamic supercontinuum

    Get PDF
    We report the experimental observation of multi-bound-soliton solutions of the nonlinear Schrödinger equation (NLS) in the context of hydrodynamic surface gravity waves. Higher-order N-soliton solutions with N=2, 3 are studied in detail and shown to be
    • …