7 research outputs found

    Glycosylation Heterogeneity of Hyperglycosylated Recombinant Human Interferon‑β (rhIFN-β)

    No full text
    We previously developed a biobetter version of rhIFN-β (R27T) that possesses an additional glycosylation site compared with rhIFN-β 1a. Herein, we characterized N-glycosylation heterogeneity of R27T, which includes both N-glycan site occupancy heterogeneity (macro-heterogeneity) and complexity of carbohydrate moieties (micro-heterogeneity). N-glycan site occupancy manifested as distinct differences in size and isoelectric point. The analysis of complex carbohydrate moieties of R27T involved the common biopharmaceutical glycosylation critical quality attributes such as core fucosylation, antennary composition, sialylation, N-acetyllactosamine extensions, linkages, and overall glycan profiles using weak anion-exchange and hydrophilic interaction high-performance liquid chromatography with 2-aminobenzoic acid-labeled N-glycans. The double-glycosylated form accounted for approx. 94% R27T, while the single-glycosylated form accounted for 6% R27T. N-glycans consisted of a mixture of bi-, tri-, and tetra-antennary glycans, some with N-acetyllactosamine extensions, but neither outer arm fucose nor α-galactose was detected. Sialic acid major variants, N-acetyl- and N-glycolyl-neuraminic acid, were more abundant in R27T than in Rebif. The major N-glycan, accounting for ∼42% of total N-glycans, had a di-sialylated, core-fucosylated bi-antennary structure

    Additional file 1 of Old age is associated with worse treatment outcome and frequent adverse drug reaction in Mycobacterium avium complex pulmonary disease

    No full text
    Additional file 1. Supplementary Figure 1. Treatment duration, long-term treatment success, and adverse drug reactions by age as a continuous variable

    Table_1_Clinical outcomes following robotic versus conventional DIEP flap in breast reconstruction: A retrospective matched study.docx

    No full text
    BackgroundA robotic deep inferior epigastric perforator (DIEP) flap created through a totally extraperitoneal approach minimizes violation of the donor site, which may lead to postoperative pain reduction and rapid recovery. The authors compared the clinical outcomes of robotic and conventional DIEP flap breast reconstructions.MethodsData from consecutive patients who underwent mastectomy with DIEP flaps for breast reconstruction between July 2017 and January 2021 were retrospectively reviewed. Patients were divided into robotic and conventional DIEP groups, and the two groups were matched using the inverse probability of treatment weighting method. They were compared based on the reconstruction time, drainage amount, postoperative pain, rescue analgesics, hospital stay, complications, and BREAST-Q scores.ResultsAfter matching, a dataset of 207 patients was formed, including 21 patients in the robotic DIEP group and 186 patients in the conventional DIEP group. The mean reconstruction time was longer in the robotic DIEP group than in the conventional DIEP group (PConclusionsThis study suggests that a robotic DIEP flap offers enhanced postoperative recovery, accompanied by a reduction in postoperative pain and hospital stay.</p

    Video_1_Clinical outcomes following robotic versus conventional DIEP flap in breast reconstruction: A retrospective matched study.mp4

    No full text
    BackgroundA robotic deep inferior epigastric perforator (DIEP) flap created through a totally extraperitoneal approach minimizes violation of the donor site, which may lead to postoperative pain reduction and rapid recovery. The authors compared the clinical outcomes of robotic and conventional DIEP flap breast reconstructions.MethodsData from consecutive patients who underwent mastectomy with DIEP flaps for breast reconstruction between July 2017 and January 2021 were retrospectively reviewed. Patients were divided into robotic and conventional DIEP groups, and the two groups were matched using the inverse probability of treatment weighting method. They were compared based on the reconstruction time, drainage amount, postoperative pain, rescue analgesics, hospital stay, complications, and BREAST-Q scores.ResultsAfter matching, a dataset of 207 patients was formed, including 21 patients in the robotic DIEP group and 186 patients in the conventional DIEP group. The mean reconstruction time was longer in the robotic DIEP group than in the conventional DIEP group (PConclusionsThis study suggests that a robotic DIEP flap offers enhanced postoperative recovery, accompanied by a reduction in postoperative pain and hospital stay.</p

    Gate-Tunable Multiband van der Waals Photodetector and Polarization Sensor

    No full text
    A single photodetector with tunable detection wavelengths and polarization sensitivity can potentially be harnessed for diverse optical applications ranging from imaging and sensing to telecommunications. Such a device will require the combination of multiple material systems with different structures, band gaps, and photoelectrical responses, which is extremely difficult to engineer using traditional epitaxial films. Here, we develop a multifunctional and high-performance photosensor using all van der Waals materials. The device features a gate-tunable spectral response that is switchable between near-infrared/visible and short-/midwave infrared, as well as broad-band operation, at room temperature. The linear polarization sensitivity in the telecommunication O-band can also be directly modulated between horizontal, vertical, and nonpolarizing modes. These effects originate from the balance of photocurrent generation in two of the active layers that can be manipulated by an electric field. The photodetector features high detectivity (>109 cmHz1/2W–1) together with fast operation speed (∼1 MHz) and can be further exploited for dual visible and infrared imaging

    High-Performance Mid-IR to Deep-UV van der Waals Photodetectors Capable of Local Spectroscopy at Room Temperature

    No full text
    The ability to perform broadband optical spectroscopy with subdiffraction-limit resolution is highly sought-after for a wide range of critical applications. However, sophisticated near-field techniques are currently required to achieve this goal. We bypass this challenge by demonstrating an extremely broadband photodetector based on a two-dimensional (2D) van der Waals heterostructure that is sensitive to light across over a decade in energy from the mid-infrared (MIR) to deep-ultraviolet (DUV) at room temperature. The devices feature high detectivity (>109 cm Hz1/2 W–1) together with high bandwidth (2.1 MHz). The active area can be further miniaturized to submicron dimensions, far below the diffraction limit for the longest detectable wavelength of 4.1 μm, enabling such devices for facile measurements of local optical properties on atomic-layer-thickness samples placed in close proximity. This work can lead to the development of low-cost and high-throughput photosensors for hyperspectral imaging at the nanoscale
    corecore