57 research outputs found
A Blast Wave from the 1843 Eruption of Eta Carinae
Very massive stars shed much of their mass in violent precursor eruptions as
luminous blue variables (LBVs) before reaching their most likely end as
supernovae, but the cause of LBV eruptions is unknown. The 19th century
eruption of Eta Carinae, the prototype of these events, ejected about 12 solar
masses at speeds of 650 km/s, with a kinetic energy of almost 10^50 ergs. Some
faster material with speeds up to 1000-2000 km/s had previously been reported
but its full distribution was unknown. Here I report observations of much
faster material with speeds up to 3500-6000 km/s, reaching farther from the
star than the fastest material in earlier reports. This fast material roughly
doubles the kinetic energy of the 19th century event, and suggests that it
released a blast wave now propagating ahead of the massive ejecta. Thus, Eta
Car's outer shell now mimics a low-energy supernova remnant. The eruption has
usually been discussed in terms of an extreme wind driven by the star's
luminosity, but fast material reported here suggests that it was powered by a
deep-seated explosion rivalling a supernova, perhaps triggered by the
pulsational pair instability. This may alter interpretations of similar events
seen in other galaxies.Comment: 10 pages, 3 color figs, supplementary information. Accepted by Natur
An extragalactic supernebula confined by gravity
Little is known about the origins of the giant star clusters known as
globular clusters. How can hundreds of thousands of stars form simultaneously
in a volume only a few light years across the distance of the sun to its
nearest neighbor? Radiation pressure and winds from luminous young stars should
disperse the star-forming gas and disrupt the formation of the cluster.
Globular clusters in our Galaxy cannot provide answers; they are billions of
years old. Here we report the measurement of infrared hydrogen recombination
lines from a young, forming super star cluster in the dwarf galaxy, NGC 5253.
The lines arise in gas heated by a cluster of an estimated million stars, so
young that it is still enshrouded in gas and dust, hidden from optical view. We
verify that the cluster contains 4000-6000 massive, hot "O" stars. Our
discovery that the gases within the cluster are bound by gravity may explain
why these windy and luminous O stars have not yet blown away the gases to allow
the cluster to emerge from its birth cocoon. Young clusters in "starbursting"
galaxies in the local and distant universe may be similarly gravitationally
confined and cloaked from view.Comment: Letter to Natur
An upper limit to the masses of stars
There is no accepted upper mass limit for stars. Such a basic quantity
escapes both theory, because of incomplete understanding of star formation, and
observation, because of incompleteness in surveying the Galaxy. The Arches
cluster is ideal for such a test, being massive enough to expect stars at least
as massive as 400 solar masses, and young enough for its most massive members
to still be visible. It is old enough to be free of its natal molecular cloud,
and close enough, and at a well-established distance, for us to discern its
individual stars. Here I report an absence of stars with initial masses greater
than 130 M_Sun in the Arches cluster, where the typical mass function predicts
18. I conclude that this indicates a firm limit of 150 M_Sun for stars as the
probability that the observations are consistent with no limit is 10^-8.Comment: To appear in Nature, March 10, 2005, Vol. 34, No. 7030, 192 (ST ScI
Eprint #1645). More files can be found at http://www.stsci.edu/~fige
Light echoes reveal an unexpectedly cool Eta Carinae during its 19th-century Great Eruption
Eta Carinae (Eta Car) is one of the most massive binary stars in the Milky
Way. It became the second-brightest star in the sky during its mid-19th century
"Great Eruption," but then faded from view (with only naked-eye estimates of
brightness). Its eruption is unique among known astronomical transients in that
it exceeded the Eddington luminosity limit for 10 years. Because it is only 2.3
kpc away, spatially resolved studies of the nebula have constrained the ejected
mass and velocity, indicating that in its 19th century eruption, Eta Car
ejected more than 10 M_solar in an event that had 10% of the energy of a
typical core-collapse supernova without destroying the star. Here we report the
discovery of light echoes of Eta Carinae which appear to be from the 1838-1858
Great Eruption. Spectra of these light echoes show only absorption lines, which
are blueshifted by -210 km/s, in good agreement with predicted expansion
speeds. The light-echo spectra correlate best with those of G2-G5 supergiant
spectra, which have effective temperatures of ~5000 K. In contrast to the class
of extragalactic outbursts assumed to be analogs of Eta Car's Great Eruption,
the effective temperature of its outburst is significantly cooler than allowed
by standard opaque wind models. This indicates that other physical mechanisms
like an energetic blast wave may have triggered and influenced the eruption.Comment: Accepted for publication by Nature; 4 pages, 4 figures, SI: 6 pages,
3 figures, 5 table
The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II lambda 1640 in young star clusters
We introduce a Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) stellar census of R136a, the central ionizing star cluster of 30 Doradus. We present low resolution far-ultraviolet STIS spectroscopy of R136 using 17 contiguous 52 arcsec × 0.2 arcsec slits which together provide complete coverage of the central 0.85 parsec (3.4 arcsec). We provide spectral types of 90 per cent of the 57 sources brighter than mF555W = 16.0 mag within a radius of 0.5 parsec of R136a1, plus 8 additional nearby sources including R136b (O4 If/WN8). We measure wind velocities for 52 early-type stars from C IVλλ1548–51, including 16 O2–3 stars. For the first time, we spectroscopically classify all Weigelt and Baier members of R136a, which comprise three WN5 stars (a1–a3), two O supergiants (a5–a6) and three early O dwarfs (a4, a7, a8). A complete Hertzsprung–Russell diagram for the most massive O stars in R136 is provided, from which we obtain a cluster age of 1.5
+0.3−0.7
−0.7+0.3
Myr. In addition, we discuss the integrated ultraviolet spectrum of R136, and highlight the central role played by the most luminous stars in producing the prominent He II λ1640 emission line. This emission is totally dominated by very massive stars with initial masses above ∼100 M⊙. The presence of strong He II λ1640 emission in the integrated light of very young star clusters (e.g. A1 in NGC 3125) favours an initial mass function extending well beyond a conventional upper limit of 100 M⊙. We include montages of ultraviolet spectroscopy for Large Magellanic Cloud O stars in the appendix. Future studies in this series will focus on optical STIS medium resolution observations
Astronomical Spectroscopy
Spectroscopy is one of the most important tools that an astronomer has for
studying the universe. This chapter begins by discussing the basics, including
the different types of optical spectrographs, with extension to the ultraviolet
and the near-infrared. Emphasis is given to the fundamentals of how
spectrographs are used, and the trade-offs involved in designing an
observational experiment. It then covers observing and reduction techniques,
noting that some of the standard practices of flat-fielding often actually
degrade the quality of the data rather than improve it. Although the focus is
on point sources, spatially resolved spectroscopy of extended sources is also
briefly discussed. Discussion of differential extinction, the impact of
crowding, multi-object techniques, optimal extractions, flat-fielding
considerations, and determining radial velocities and velocity dispersions
provide the spectroscopist with the fundamentals needed to obtain the best
data. Finally the chapter combines the previous material by providing some
examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and
Stellar Systems, to be published in 2011 by Springer. Slightly revise
Eta Carinae and the Luminous Blue Variables
We evaluate the place of Eta Carinae amongst the class of luminous blue
variables (LBVs) and show that the LBV phenomenon is not restricted to
extremely luminous objects like Eta Car, but extends luminosities as low as
log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses
as low as ~10-15 Msun. We present a census of S Doradus variability, and
discuss basic LBV properties, their mass-loss behaviour, and whether at maximum
light they form pseudo-photospheres. We argue that those objects that exhibit
giant Eta Car-type eruptions are most likely related to the more common type of
S Doradus variability. Alternative atmospheric models as well as
sub-photospheric models for the instability are presented, but the true nature
of the LBV phenomenon remains as yet elusive. We end with a discussion on the
evolutionary status of LBVs - highlighting recent indications that some LBVs
may be in a direct pre-supernova state, in contradiction to the standard
paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova
imposters" (eds R. Humphreys and K. Davidson) new version submitted to
Springe
A Wolf-Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind.
The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen-deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic (ref. 2). A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib (ref. 3), but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star). We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Spectropolarimetry of stars across the H-R diagram
The growing sample of magnetic stars shows a remarkable diversity in the
properties of their magnetic fields. The overall goal of current studies is to
understand the origin, evolution, and structure of stellar magnetic fields in
stars of different mass at different evolutionary stages. In this chapter we
discuss recent measurements together with the underlying assumptions in the
interpretation of data and the requirements, both observational and
theoretical, for obtaining a realistic overview of the role of magnetic fields
in various types of stars.Comment: 23 pages, 3 figures, chapter 7 of "Astronomical Polarisation from the
Infrared to Gamma Rays", published in Astrophysics and Space Science Library
46
- …