169 research outputs found
An Ultrasonic Study on Anelasticity in Metals
Ultrasonic waves are highly sensitive to microstructural variations in materials and have been used extensively to investigate anharmonic effects in various metals and alloys[1–3]. A major focus of these studies is on the higher order elastic constants and their relation to the microstructure of the material. Ultrasonic techniques have also proven quite useful for characterizing the stress state of a material [4–6]. Recently, while using the magnetoacoustic (MAC) method to investigate the residual stress in various steel samples, a time dependent change in the results was observed. It became apparent that the measurements were exhibiting anelastic effects due to some intrinsic properties of the samples.</p
Q&A: ChIP-seq technologies and the study of gene regulation
10.1186/1741-7007-8-56BMC Biology85
Differential distribution of a SINE element in the Entamoeba histolytica and Entamoeba dispar genomes: Role of the LINE-encoded endonuclease
<p>Abstract</p> <p>Background</p> <p><it>Entamoeba histolytica </it>and <it>Entamoeba dispar </it>are closely related protistan parasites but while <it>E. histolytica </it>can be invasive, <it>E. dispar </it>is completely non pathogenic. Transposable elements constitute a significant portion of the genome in these species; there being three families of LINEs and SINEs. These elements can profoundly influence the expression of neighboring genes. Thus their genomic location can have important phenotypic consequences. A genome-wide comparison of the location of these elements in the <it>E. histolytica </it>and <it>E. dispar </it>genomes has not been carried out. It is also not known whether the retrotransposition machinery works similarly in both species. The present study was undertaken to address these issues.</p> <p>Results</p> <p>Here we extracted all genomic occurrences of full-length copies of EhSINE1 in the <it>E. histolytica </it>genome and matched them with the homologous regions in <it>E. dispar</it>, and vice versa, wherever it was possible to establish synteny. We found that only about 20% of syntenic sites were occupied by SINE1 in both species. We checked whether the different genomic location in the two species was due to differences in the activity of the LINE-encoded endonuclease which is required for nicking the target site. We found that the endonucleases of both species were essentially very similar, both in their kinetic properties and in their substrate sequence specificity. Hence the differential distribution of SINEs in these species is not likely to be influenced by the endonuclease. Further we found that the physical properties of the DNA sequences adjoining the insertion sites were similar in both species.</p> <p>Conclusions</p> <p>Our data shows that the basic retrotransposition machinery is conserved in these sibling species. SINEs may indeed have occupied all of the insertion sites in the genome of the common ancestor of <it>E. histolytica </it>and <it>E. dispar </it>but these may have been subsequently lost from some locations. Alternatively, SINE expansion took place after the divergence of the two species. The absence of SINE1 in 80% of syntenic loci could affect the phenotype of the two species, including their pathogenic properties, which needs to be explored.</p
Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s
A precise measurement of the inclusive deep-inelastic e^+p scattering cross
section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and
3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in
1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The
double differential cross section, from which the proton structure function
F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is
measured with typically 1% statistical and 3% systematic uncertainties. The
measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise
continuously towards small x for fixed Q^2. The cross section data are combined
with published H1 measurements at high Q^2 for a next-to-leading order DGLAP
QCD analysis.The H1 data determine the gluon momentum distribution in the range
3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20
GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS
collaboration allows the strong coupling constant alpha_s and the gluon
distribution to be simultaneously determined. A value of alpha
_s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with
an additional theoretical uncertainty of about +-0.005, mainly due to the
uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
Systematic Evaluation of Factors Influencing ChIP-Seq Fidelity
We performed a systematic evaluation of how variations in sequencing depth and other parameters influence interpretation of Chromatin immunoprecipitation (ChIP) followed by sequencing (ChIP-seq) experiments. Using Drosophila S2 cells, we generated ChIP-seq datasets for a site-specific transcription factor (Suppressor of Hairy-wing) and a histone modification (H3K36me3). We detected a chromatin state bias, open chromatin regions yielded higher coverage, which led to false positives if not corrected and had a greater effect on detection specificity than any base-composition bias. Paired-end sequencing revealed that single-end data underestimated ChIP library complexity at high coverage. The removal of reads originating at the same base reduced false-positives while having little effect on detection sensitivity. Even at a depth of ~1 read/bp coverage of mappable genome, ~1% of the narrow peaks detected on a tiling array were missed by ChIP-seq. Evaluation of widely-used ChIP-seq analysis tools suggests that adjustments or algorithm improvements are required to handle datasets with deep coverage
DNA Specificity Determinants Associate with Distinct Transcription Factor Functions
To elucidate how genomic sequences build transcriptional control networks, we need to understand the connection between DNA sequence and transcription factor binding and function. Binding predictions based solely on consensus predictions are limited, because a single factor can use degenerate sequence motifs and because related transcription factors often prefer identical sequences. The ETS family transcription factor, ETS1, exemplifies these challenges. Unexpected, redundant occupancy of ETS1 and other ETS proteins is observed at promoters of housekeeping genes in T cells due to common sequence preferences and the presence of strong consensus motifs. However, ETS1 exhibits a specific function in T cell activation; thus, unique transcriptional targets are predicted. To uncover the sequence motifs that mediate specific functions of ETS1, a genome-wide approach, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq), identified both promoter and enhancer binding events in Jurkat T cells. A comparison with DNase I sensitivity both validated the dataset and also improved accuracy. Redundant occupancy of ETS1 with the ETS protein GABPA occurred primarily in promoters of housekeeping genes, whereas ETS1 specific occupancy occurred in the enhancers of T cell–specific genes. Two routes to ETS1 specificity were identified: an intrinsic preference of ETS1 for a variant of the ETS family consensus sequence and the presence of a composite sequence that can support cooperative binding with a RUNX transcription factor. Genome-wide occupancy of RUNX factors corroborated the importance of this partnership. Furthermore, genome-wide occupancy of co-activator CBP indicated tight co-localization with ETS1 at specific enhancers, but not redundant promoters. The distinct sequences associated with redundant versus specific ETS1 occupancy were predictive of promoter or enhancer location and the ontology of nearby genes. These findings demonstrate that diversity of DNA binding motifs may enable variable transcription factor function at different genomic sites
An Integrated Pipeline for the Genome-Wide Analysis of Transcription Factor Binding Sites from ChIP-Seq
ChIP-Seq has become the standard method for genome-wide profiling DNA association
of transcription factors. To simplify analyzing and interpreting ChIP-Seq data,
which typically involves using multiple applications, we describe an integrated,
open source, R-based analysis pipeline. The pipeline addresses data input, peak
detection, sequence and motif analysis, visualization, and data export, and can
readily be extended via other R and Bioconductor packages. Using a standard
multicore computer, it can be used with datasets consisting of tens of thousands
of enriched regions. We demonstrate its effectiveness on published human
ChIP-Seq datasets for FOXA1, ER, CTCF and STAT1, where it detected co-occurring
motifs that were consistent with the literature but not detected by other
methods. Our pipeline provides the first complete set of Bioconductor tools for
sequence and motif analysis of ChIP-Seq and ChIP-chip data
Chromatin Organization in Sperm May Be the Major Functional Consequence of Base Composition Variation in the Human Genome
Chromatin in sperm is different from that in other cells, with most of the genome packaged by protamines not nucleosomes. Nucleosomes are, however, retained at some genomic sites, where they have the potential to transmit paternal epigenetic information. It is not understood how this retention is specified. Here we show that base composition is the major determinant of nucleosome retention in human sperm, predicting retention very well in both genic and non-genic regions of the genome. The retention of nucleosomes at GC-rich sequences with high intrinsic nucleosome affinity accounts for the previously reported retention at transcription start sites and at genes that regulate development. It also means that nucleosomes are retained at the start sites of most housekeeping genes. We also report a striking link between the retention of nucleosomes in sperm and the establishment of DNA methylation-free regions in the early embryo. Taken together, this suggests that paternal nucleosome transmission may facilitate robust gene regulation in the early embryo. We propose that chromatin organization in the male germline, rather than in somatic cells, is the major functional consequence of fine-scale base composition variation in the human genome. The selective pressure driving base composition evolution in mammals could, therefore, be the need to transmit paternal epigenetic information to the zygote
Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis
<p>Abstract</p> <p>Background</p> <p>After infecting a mammalian host, the facultative intracellular bacterium, <it>Francisella tularensis</it>, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection.</p> <p>Results</p> <p>Microarray analysis of <it>F. tularensis </it>LVS shifted from 26°C (environmental) to 37°C (mammalian) showed ~11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37°C have been previously implicated in virulence or intracellular growth of <it>Francisella </it>in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C encode proteins of unknown function, suggesting novel <it>Francisella </it>virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37°C [FTL_1581 and FTL_1664 (<it>deoB</it>)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming <it>t</it>emperature-<it>i</it>nduced, <it>v</it>irulence-associated locus <it>A</it>, <it>tivA</it>. Interestingly, the <it>deoB </it>mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a <it>Francisella </it>gene that contributes to uptake into both phagocytic and non-phagocytic host cells.</p> <p>Conclusion</p> <p>Our results provide new insight into mechanisms of <it>Francisella </it>virulence regulation and pathogenesis. <it>F. tularensis </it>LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of <it>Francisella</it>. Importantly, the compilation of temperature-regulated genes also defines a rich collection of novel candidate virulence determinants, including <it>tivA </it>(FTL_1581). An analysis of <it>tivA </it>and <it>deoB </it>(FTL_1664) revealed that these genes contribute to intracellular survival and entry into mammalian cells, respectively.</p
- …