55 research outputs found

    GeNN: a code generation framework for accelerated brain simulations

    Get PDF
    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/

    Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling

    Get PDF
    This paper investigates the dependence of synchronization transitions of bursting oscillations on the information transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-free neuronal networks with delays.Comment: 15 pages, 9 figures; accepted for publication in PLoS ONE [related work available at http://arxiv.org/abs/0907.4961 and http://www.matjazperc.com/

    From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex

    Get PDF
    Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons

    ‘Functional Connectivity’ Is a Sensitive Predictor of Epilepsy Diagnosis after the First Seizure

    Get PDF
    Background: Although epilepsy affects almost 1 % of the world population, diagnosis of this debilitating disease is still difficult. The EEG is an important tool for epilepsy diagnosis and classification, but the sensitivity of interictal epileptiform discharges (IEDs) on the first EEG is only 30–50%. Here we investigate whether using ‘functional connectivity ’ can improve the diagnostic sensitivity of the first interictal EEG in the diagnosis of epilepsy. Methodology/Principal Findings: Patients were selected from a database with 390 standard EEGs of patients after a first suspected seizure. Patients who were later diagnosed with epilepsy (i.e. $two seizures) were compared to matched nonepilepsy patients (with a minimum follow-up of one year). The synchronization likelihood (SL) was used as an index of functional connectivity of the EEG, and average SL per patient was calculated in seven frequency bands. In total, 114 patients were selected. Fifty-seven patients were diagnosed with epilepsy (20 had IEDs on their EEG) and 57 matched patients had other diagnoses. Epilepsy patients had significantly higher SL in the theta band than non-epilepsy patients. Furthermore, theta band SL proved to be a significant predictor of a diagnosis of epilepsy. When only those epilepsy patients without IEDs were considered (n = 74), theta band SL could predict diagnosis with specificity of 76 % and sensitivity of 62%. Conclusion/Significance: Theta band functional connectivity may be a useful diagnostic tool in diagnosing epilepsy

    Increased Resting-State Functional Connectivity in Obese Adolescents; A Magnetoencephalographic Pilot Study

    Get PDF
    BACKGROUND: Obesity is not only associated with metabolic abnormalities, but also with cognitive dysfunction and changes in the central nervous system. The present pilot study was carried out to investigate functional connectivity in obese and non-obese adolescents using magnetoencephalography (MEG). METHODOLOGY/PRINCIPAL FINDINGS: Magnetoencephalographic recordings were performed in 11 obese (mean BMI 38.8+/-4.6 kg/m(2)) and 8 lean (mean BMI 21.0+/-1.5 kg/m(2)) female adolescents (age 12-19 years) during an eyes-closed resting-state condition. From these recordings, the synchronization likelihood (SL), a common method that estimates both linear and non-linear interdependencies between MEG signals, was calculated within and between brain regions, and within standard frequency bands (delta, theta, alpha1, alpha2, beta and gamma). The obese adolescents had increased synchronization in delta (0.5-4 Hz) and beta (13-30 Hz) frequency bands compared to lean controls (P(delta total) = 0.001; P(beta total) = 0.002). CONCLUSIONS/SIGNIFICANCE: This study identified increased resting-state functional connectivity in severe obese adolescents. Considering the importance of functional coupling between brain areas for cognitive functioning, the present findings strengthen the hypothesis that obesity may have a major impact on human brain function. The cause of the observed excessive synchronization is unknown, but might be related to disturbed motivational pathways, the recently demonstrated increase in white matter volume in obese subjects or altered metabolic processes like hyperinsulinemia. The question arises whether the changes in brain structure and communication are a dynamic process due to weight gain and whether these effects are reversible or not
    • …
    corecore