3,162 research outputs found
Particle Propagator of Spin Calogero-Sutherland Model
Explicit-exact expressions for the particle propagator of the spin 1/2
Calogero-Sutherland model are derived for the system of a finite number of
particles and for that in the thermodynamic limit. Derivation of the expression
in the thermodynamic limit is also presented in detail. Combining this result
with the hole propagator obtained in earlier studies, we calculate the spectral
function of the single particle Green's function in the full range of the
energy and momentum space. The resultant spectral function exhibits power-law
singularity characteristic to correlated particle systems in one dimension.Comment: 43 pages, 6 figure
First-principles study on dielectric properties of NaCl crystal and ultrathin NaCl films under finite external electric field
We present a first-principles study on the dielectric properties of an NaCl
crystal and ultrathin NaCl films under a finite external electric field. Our
results show that the high-frequency dielectric constant of the films is not
affected by the finite size effect from crystal surfaces and is close to that
of the crystal, whereas the static one is sensitive to the thickness of the
film due to the difference in the atomic configurations between the surface and
inside of the film.Comment: 11 pages and 4 figure
Anisotropic Superconducting Properties of Optimally Doped BaFe(AsP) under Pressure
Magnetic measurements on optimally doped single crystals of
BaFe(AsP) () with magnetic fields applied
along different crystallographic axes were performed under pressure, enabling
the pressure evolution of coherence lengths and the anisotropy factor to be
followed. Despite a decrease in the superconducting critical temperature, our
studies reveal that the superconducting properties become more anisotropic
under pressure. With appropriate scaling, we directly compare these properties
with the values obtained for BaFe(AsP) as a function of
phosphorus content.Comment: 5 pages, 3 figure
Magnetic field distribution and characteristic fields of the vortex lattice for a clean superconducting niobium sample in an external field applied along a three-fold axis
The field distribution in the vortex lattice of a pure niobium single crystal
with an external field applied along a three-fold axis has been investigated by
the transverse-field muon-spin-rotation (TF-SR) technique over a wide
range of temperatures and fields. The experimental data have been analyzed with
the Delrieu's solution for the form factor supplemented by phenomenological
formulas for the parameters. This has enabled us to experimentally establish
the temperatures and fields for the Delrieu's, Ginzburg-Landau's, and Klein's
regions of the vortex lattice. Using the numerical solution of the
quasiclassical Eilenberger's equation the experimental results have been
reasonably understood. They should apply to all clean BCS superconductors. The
analytical Delrieu's model supplemented by phenomenological formulas for its
parameters is found to be reliable for analyzing TF-SR experimental data
for a substantial part of the mixed phase. The Abrikosov's limit is contained
in it.Comment: 12 pages, 15 figure
Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators
Genetically-encoded calcium indicators (GECIs) hold the promise of monitoring [Ca(2+)] in selected populations of neurons and in specific cellular compartments. Relating GECI fluorescence to neuronal activity requires quantitative characterization. We have characterized a promising new genetically-encoded calcium indicator-GCaMP2-in mammalian pyramidal neurons. Fluorescence changes in response to single action potentials (17+/-10% DeltaF/F [mean+/-SD]) could be detected in some, but not all, neurons. Trains of high-frequency action potentials yielded robust responses (302+/-50% for trains of 40 action potentials at 83 Hz). Responses were similar in acute brain slices from in utero electroporated mice, indicating that long-term expression did not interfere with GCaMP2 function. Membrane-targeted versions of GCaMP2 did not yield larger signals than their non-targeted counterparts. We further targeted GCaMP2 to dendritic spines to monitor Ca(2+) accumulations evoked by activation of synaptic NMDA receptors. We observed robust DeltaF/F responses (range: 37%-264%) to single spine uncaging stimuli that were correlated with NMDA receptor currents measured through a somatic patch pipette. One major drawback of GCaMP2 was its low baseline fluorescence. Our results show that GCaMP2 is improved from the previous versions of GCaMP and may be suited to detect bursts of high-frequency action potentials and synaptic currents in vivo
Chemical and microbial characteristics of forest soil by the difference of forest management (Biological Interactions in Arable Land-Grassland-Forest Continuums and their Impact on the Ecosystem Functions, 7th International Symposium on Integrated Field Science)
31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State
The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation)
measurements on the filled skutterudite system SmFe4P12 have been carried out.
The temperature T dependence of the 31P-NMR spectra indicates the existence of
the crystalline electric field effect splitting of the Sm3+$ (J = 5/2)
multiplet into a ground state and an excited state of about 70 K. The
spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo
system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion
to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T
dependence deviated from the Korringa behavior below 7 K, which is independent
of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher
fields. The behavior is explained as 1/T1is determined by ferromagnetic
fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons.
The muSR measurements in zero field show the appearance of a static internal
field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006
Kinematics of Spiral Arm Streaming in M51
We use CO and H alpha velocity fields to study the gas kinematics in the
spiral arms and interarms of M51 (NGC 5194), and fit the 2D velocity field to
estimate the radial and tangential velocity components as a function of spiral
phase (arm distance). We find large radial and tangential streaming velocities,
which are qualitatively consistent with the predictions of density wave theory
and support the existence of shocks. The streaming motions are complex, varying
significantly across the galaxy as well as along and between arms. Aberrations
in the velocity field indicate that the disk is not coplanar, perhaps as far in
as 20\arcsec\ (800 pc) from the center. Velocity profile fits from CO and H
alpha are typically similar, suggesting that most of the H alpha emission
originates from regions of recent star formation. We also explore vortensity
and mass conservation conditions. Vortensity conservation, which does not
require a steady state, is empirically verified. The velocity and density
profiles show large and varying mass fluxes, which are inconsistent with a
steady flow for a single dominant global spiral mode. We thus conclude that the
spiral arms cannot be in a quasi-steady state in any rotating frame, and/or
that out of plane motions may be significant.Comment: 50 pages, including 20 figures; Accepted for publication in ApJ. PDF
version with high resolution figures available at
http://www.astro.umd.edu/~shetty/Research
Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2
Measurements of the superconducting transition temperature, T_c, under
hydrostatic pressure via bulk AC susceptibility were carried out on several
concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The
pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration
dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of
BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This
demonstrates that phosphorous substitution and physical pressure result in
similar superconducting phase diagrams, and that phosphorous substitution does
not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical
Society of Japa
- β¦