3 research outputs found

    A comparison of CFD and full-scale measurements for analysis of natural ventilation

    Get PDF
    CFD modelling techniques have been used to simulate the coupled external and internal flow in a cubic building with two dominant openings. CFD predictions of the time-averaged cross ventilation flow rates have been validated against full-scale experimental data under various weather conditions in England. RANS model predictions proved reliable when wind directions were near normal to the vent openings. However, when the fluctuating ventilation rate exceeded the mean flow, RANS models were incapable of predicting the total ventilation rate. Improved results are expected by applying more sophisticated turbulence models, such as LES or weighted quasi-steady approximations

    Physical complexity to model morphological changes at a natural channel bend

    Get PDF
    This study developed a two-dimensional (2-D) depth-averaged model for morphological changes at natural bends by including a secondary flow correction. The model was tested in two laboratory-scale events. A field study was further adopted to demonstrate the capability of the model in predicting bed deformation at natural bends. Further, a series of scenarios with different setups of sediment-related parameters were tested to explore the possibility of a 2-D model to simulate morphological changes at a natural bend, and to investigate how much physical complexity is needed for reliable modeling. The results suggest that a 2-D depth-averaged model can reconstruct the hydrodynamic and morphological features at a bend reasonably provided that the model addresses a secondary flow correction, and reasonably parameterize grain-sizes within a channel in a pragmatic way. The factors, such as sediment transport formula and roughness height, have relatively less significance on the bed change pattern at a bend. The study reveals that the secondary flow effect and grain-size parameterization should be given a first priority among other parameters when modeling bed deformation at a natural bend using a 2-D model

    Physical complexity to model morphological changes at a natural channel bend

    No full text
    This study developed a two-dimensional (2-D) depth-averaged model for morphological changes at natural bends by including a secondary flow correction. The model was tested in two laboratory-scale events. A field study was further adopted to demonstrate the capability of the model in predicting bed deformation at natural bends. Further, a series of scenarios with different setups of sediment-related parameters were tested to explore the possibility of a 2-D model to simulate morphological changes at a natural bend, and to investigate how much physical complexity is needed for reliable modeling. The results suggest that a 2-D depth-averaged model can reconstruct the hydrodynamic and morphological features at a bend reasonably provided that the model addresses a secondary flow correction, and reasonably parameterize grain-sizes within a channel in a pragmatic way. The factors, such as sediment transport formula and roughness height, have relatively less significance on the bed change pattern at a bend. The study reveals that the secondary flow effect and grain-size parameterization should be given a first priority among other parameters when modeling bed deformation at a natural bend using a 2-D model
    corecore