77 research outputs found

    An Isocurvature Mechanism for Structure Formation

    Get PDF
    We examine a novel mechanism for structure formation involving initial number density fluctuations between relativistic species, one of which then undergoes a temporary downward variation in its equation of state and generates superhorizon-scale density fluctuations. Isocurvature decaying dark matter models (iDDM) provide concrete examples. This mechanism solves the phenomenological problems of traditional isocurvature models, allowing iDDM models to fit the current CMB and large-scale structure data, while still providing novel behavior. We characterize the decaying dark matter and its decay products as a single component of ``generalized dark matter''. This simplifies calculations in decaying dark matter models and others that utilize this mechanism for structure formation.Comment: 4 pages, 3 figures, submitted to PRD (rapid communications

    Scaling Relations for Collision-less Dark Matter Turbulence

    Full text link
    Many scaling relations are observed for self-gravitating systems in the universe. We explore the consistent understanding of them from a simple principle based on the proposal that the collision-less dark matter fluid terns into a turbulent state, i.e. dark turbulence, after crossing the caustic surface in the non-linear stage. The dark turbulence will not eddy dominant reflecting the collision-less property. After deriving Kolmogorov scaling laws from Navier-Stokes equation by the method similar to the one for Smoluchowski coagulation equation, we apply this to several observations such as the scale-dependent velocity dispersion, mass-luminosity ratio, magnetic fields, and mass-angular momentum relation, power spectrum of density fluctuations. They all point the concordant value for the constant energy flow per mass: 0.3cm2/sec30.3 cm^2/sec^3, which may be understood as the speed of the hierarchical coalescence process in the cosmic structure formation.Comment: 26 pages, 6 figure

    A small universe after all?

    Get PDF
    The cosmic microwave background radiation allows us to measure both the geometry and topology of the universe. It has been argued that the COBE-DMR data already rule out models that are multiply connected on scales smaller than the particle horizon. Here we show the opposite is true: compact (small) hyperbolic universes are favoured over their infinite counterparts. For a density parameter of Omega_o=0.3, the compact models are a better fit to COBE-DMR (relative likelihood ~20) and the large-scale structure data (sigma_8 increases by ~25%).Comment: 4 pages, RevTeX, 7 Figure

    Is cosmology consistent?

    Full text link
    We perform a detailed analysis of the latest CMB measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the ``standard'' adiabatic inflationary cosmological model. Out best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favors ``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny changes due to smaller DASI & Maxima calibration errors. Expanded neutrino and tensor discussion, added refs, typos fixed. Combined CMB data, window and covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from [email protected]

    Cluster Masses Accounting for Structure along the Line of Sight

    Full text link
    Weak gravitational lensing of background galaxies by foreground clusters offers an excellent opportunity to measure cluster masses directly without using gas as a probe. One source of noise which seems difficult to avoid is large scale structure along the line of sight. Here I show that, by using standard map-making techniques, one can minimize the deleterious effects of this noise. The resulting uncertainties on cluster masses are significantly smaller than when large scale structure is not properly accounted for, although still larger than if it was absent altogether.Comment: 5 pages, 5 figure

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    Evolution of density perturbations in a realistic universe

    Full text link
    Prompted by the recent more precise determination of the basic cosmological parameters and growing evidence that the matter-energy content of the universe is now dominated by dark energy and dark matter we present the general solution of the equation that describes the evolution of density perturbations in the linear approximation. It turns out that as in the standard CDM model the density perturbations grow very slowly during the radiation dominated epoch and their amplitude increases by a factor of about 4000 in the matter and later dark energy dominated epoch of expansion of the universe.Comment: 19 pages, 4 figure

    Cosmological Models and Renormalization Group Flow

    Full text link
    We study cosmological solutions of Einstein gravity with a positive cosmological constant in diverse dimensions. These include big-bang models that re-collapse, big-bang models that approach de Sitter acceleration at late times, and bounce models that are both past and future asymptotically de Sitter. The re-collapsing and the bounce geometries are all tall in the sense that entire spatial slices become visible to a comoving observer before the end of conformal time, while the accelerating big-bang geometries can be either short or tall. We consider the interpretation of these cosmological solutions as renormalization group flows in a dual field theory and give a geometric interpretation of the associated c-function as the area of the apparent cosmological horizon in Planck units. The covariant entropy bound requires quantum effects to modify the early causal structure of some of our big-bang solutions.Comment: 26 pages, 11 figures, v2: improved discussion of entropy bounds, references added, v3: minor changes, reference adde

    Fitting inverse power-law quintessence models using the SNAP satellite

    Get PDF
    We investigate the possibility of using the proposed SNAP satellite in combination with low-z supernova searches to distinguish between different inverse power-law quintessence models. If the true model is that of a cosmological constant, we determine the prospects of ruling out the inverse power-law potential. We show that SNAP combined with e.g. the SNfactory and an independent measurement of the mass energy density to 17% accuracy can distinguish between an inverse power-law potential and a cosmological constant and put severe constraints on the power-law exponent.Comment: 5 pages, 6 figure

    Noninteracting dark matter

    Get PDF
    Since an acceptable dark matter candidate may interact only weakly with ordinary matter and radiation, it is of interest to consider the limiting case where the dark matter interacts only with gravity and itself, the matter originating by the gravitational particle production at the end of inflation. We use the bounds on the present dark mass density and the measured large-scale fluctuations in the thermal cosmic background radiation to constrain the two parameters in a self-interaction potential that is a sum of quadratic and quartic terms in a single scalar dark matter field that is minimally coupled to gravity. In quintessential inflation, where the temperature at the end of inflation is relatively low, the field starts acting like cold dark matter relatively late, shortly before the epoch of equal mass densities in matter and radiation. This could have observable consequences for galaxy formation. We respond to recent criticisms of the quintessential inflation scenario, since these issues also apply to elements of the noninteracting dark matter picture.Comment: 37 pages, 3 figure
    • …
    corecore