182 research outputs found
Elastic and quasi-elastic and scattering in the Dipole Model
We have in earlier papers presented an extension of Mueller's dipole cascade
model, which includes sub-leading effects from energy conservation and running
coupling as well as colour suppressed saturation effects from pomeron loops via
a ``dipole swing''. The model was applied to describe the total and diffractive
cross sections in and collisions, and also the elastic cross
section in scattering.
In this paper we extend the model to describe the corresponding quasi-elastic
cross sections in , namely the exclusive production of vector mesons
and deeply virtual compton scattering. Also for these reactions we find a good
agrement with measured cross sections. In addition we obtain a reasonable
description of the -dependence of the elastic and quasi-elastic
cross sections
Survival probability of large rapidity gaps in QCD and N=4 SYM motivated model
In this paper we present a self consistent theoretical approach for the
calculation of the Survival Probability for central dijet production . These
calculations are performed in a model of high energy soft interactions based on
two ingredients:(i) the results of N=4 SYM, which at the moment is the only
theory that is able to deal with a large coupling constant; and (ii) the
required matching with high energy QCD. Assuming, in accordance with these
prerequisites, that soft Pomeron intercept is rather large and the slope of the
Pomeron trajectory is equal to zero, we derive analytical formulae that sum
both enhanced and semi-enhanced diagrams for elastic and diffractive
amplitudes. Using parameters obtained from a fit to the available experimental
data, we calculate the Survival Probability for central dijet production at
energies accessible at the LHC. The results presented here which include the
contribution of semi-enhanced and net diagrams, are considerably larger than
our previous estimates.Comment: 11 pages, 10 pictures in .eps file
Non-Perturbative QCD Treatment of High-Energy Hadron-Hadron Scattering
Total cross-sections and logarithmic slopes of the elastic scattering
cross-sections for different hadronic processes are calculated in the framework
of the model of the stochastic vacuum. The relevant parameters of this model, a
correlation length and the gluon condensate, are determined from scattering
data, and found to be in very good agreement with values coming from completely
different sources of information. A parameter-free relation is given between
total cross-sections and slope parameters, which is shown to be remarkably
valid up to the highest energies for which data exist.Comment: 60 pages, Heidelberg preprin
The triple-pomeron regime and the structure function of the pomeron in the diffractive deep inelastic scattering at very small x
Misprints and numerical coefficients corrected, a bit of phenomenology and
one figure added. The case for the linear evolution of the unitarized structure
functions made stronger.Comment: KFA-IKP(Th)-1993-17, Landau-16/93, 46 pages, 14 figures upon request
from N.Nikolaev, [email protected]
The effect on melanoma risk of genes previously associated with telomere length.
Telomere length has been associated with risk of many cancers, but results are inconsistent. Seven single nucleotide polymorphisms (SNPs) previously associated with mean leukocyte telomere length were either genotyped or well-imputed in 11108 case patients and 13933 control patients from Europe, Israel, the United States and Australia, four of the seven SNPs reached a P value under .05 (two-sided). A genetic score that predicts telomere length, derived from these seven SNPs, is strongly associated (P = 8.92x10(-9), two-sided) with melanoma risk. This demonstrates that the previously observed association between longer telomere length and increased melanoma risk is not attributable to confounding via shared environmental effects (such as ultraviolet exposure) or reverse causality. We provide the first proof that multiple germline genetic determinants of telomere length influence cancer risk.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/jnci/dju26
Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study
Epidemiological studies have reported inconsistent associations between telomere length (TL) and risk for various cancers. These inconsistencies are likely attributable, in part, to biases that arise due to post-diagnostic and post-treatment TL measurement. To avoid such biases, we used a Mendelian randomization approach and estimated associations between nine TL-associated SNPs and risk for five common cancer types (breast, lung, colorectal, ovarian and prostate cancer, including subtypes) using data on 51 725 cases and 62 035 controls. We then used an inverse-variance weighted average of the SNP-specific associations to estimate the association between a genetic score representing long TL and cancer risk. The long TL genetic score was significantly associated with increased risk of lung adenocarcinoma (P = 6.3 × 10−15), even after exclusion of a SNP residing in a known lung cancer susceptibility region (TERT-CLPTM1L) P = 6.6 × 10−6). Under Mendelian randomization assumptions, the association estimate [odds ratio (OR) = 2.78] is interpreted as the OR for lung adenocarcinoma corresponding to a 1000 bp increase in TL. The weighted TL SNP score was not associated with other cancer types or subtypes. Our finding that genetic determinants of long TL increase lung adenocarcinoma risk avoids issues with reverse causality and residual confounding that arise in observational studies of TL and disease risk. Under Mendelian randomization assumptions, our finding suggests that longer TL increases lung adenocarcinoma risk. However, caution regarding this causal interpretation is warranted in light of the potential issue of pleiotropy, and a more general interpretation is that SNPs influencing telomere biology are also implicated in lung adenocarcinoma risk
Accuracy Assessment of the ESA CCI 20M Land Cover Map: Kenya, Gabon, Ivory Coast and South Africa
This working paper presents the overall and spatial accuracy assessment of the European Space Agency (ESA) 20 m prototype land cover map for Africa for four countries: Kenya, Gabon, Ivory Coast and South Africa. This accuracy assessment was undertaken as part of the ESA-funded CrowdVal project. The results varied from 44% (for South Africa) to 91% (for Gabon). In the case of Kenya (56% overall accuracy) and South Africa, these values are largely caused by the confusion between grassland and shrubland. However, if a weighted confusion matrix is used, which diminishes the importance of the confusion between grassland and shrubs, the overall accuracy for Kenya increases to 79% and for South Africa, 75%. The overall accuracy for Ivory Coast (47%) is a result of a highly fragmented land cover, which makes it a difficult country to map with remote sensing. The exception was Gabon with a high overall accuracy of 91%, but this can be explained by the high amount of tree cover across the country, which is a relatively easy class to map
Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector
This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model