4,249 research outputs found

    RKKY interaction and intervalley processes in p-doped transition metal dichalcogenides

    Get PDF
    We study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in p-doped transition metal dichalcogenides such as MoS2_2 and WS2_2. We consider magnetic impurities hybridized to the Mo d-orbitals characteristic of the valence bands. Using the Matsubara Green's function formalism, we obtain the two-impurity interaction vs their separation and chemical potential of the system, accounting for the important angular dependence which reflects the underlying triangular lattice symmetry. The inclusion of the valence band valley at the Γ\Gamma point results in a strong enhancement of the interaction. Electron scattering processes transferring momentum between valleys at different symmetry points give rise to complex spatial oscillation patterns. Variable doping would allow the exploration of rather interesting behavior in the interaction of magnetic impurities on the surfaces of these materials, including the control of the interaction symmetry, which can be directly probed in STM experiments.Comment: Includes supplemental materia

    Currents and pseudomagnetic fields in strained graphene rings

    Get PDF
    We study the effects of strain on the electronic properties and persistent current characteristics of a graphene ring using the Dirac representation. For a slightly deformed graphene ring flake, one obtains sizable pseudomagnetic (gauge) fields that may effectively reduce or enhance locally the applied magnetic flux through the ring. Flux-induced persistent currents in a flat ring have full rotational symmetry throughout the structure; in contrast, we show that currents in the presence of a circularly symmetric deformation are strongly inhomogeneous, due to the underlying symmetries of graphene. This result illustrates the inherent competition between the `real' magnetic field and the `pseudo' field arising from strains, and suggest an alternative way to probe the strength and symmetries of pseudomagnetic fields on graphene systems

    Kondo screening suppression by spin-orbit interaction in quantum dots

    Full text link
    We study the transport properties of a quantum dot embedded in an Aharonov-Bohm ring in the presence of spin-orbit interactions. Using a numerical renormalization group analysis of the system in the Kondo regime, we find that the competition of Aharonov-Bohm and spin-orbit dynamical phases induces a strong suppression of the Kondo state singlet, somewhat akin to an effective intrinsic magnetic field in the system. This effective field breaks the spin degeneracy of the localized state and produces a finite magnetic moment in the dot. By introducing an {\em in-plane} Zeeman field we show that the Kondo resonance can be fully restored, reestablishing the spin singlet and a desired spin filtering behavior in the Kondo regime, which may result in full spin polarization of the current through the ring.Comment: 4 pages, 4 figure

    Graphene zigzag ribbons, square lattice models and quantum spin chains

    Full text link
    We present an extended study of finite-width zigzag graphene ribbons (ZGRs) based on a tight-binding model with hard-wall boundary conditions. We provide an exact analytic solution that clarifies the origin of the predicted width dependence on the conductance through junctions of ribbons with different widths. An analysis of the obtained solutions suggests a new description of ZGRs in terms of coupled chains. We pursue these ideas further by introducing a mapping between the ZGR model and the Hamiltonian for N-coupled quantum chains as described in terms of 2N Majorana fermions. The proposed mapping preserves the dependence of ribbon properties on its width thus rendering metallic ribbons for N odd and zero-gap semiconductor ribbons for N even. Furthermore, it reveals a close connection between the low-energy properties of the ZGR model and a continuous family of square lattice model Hamiltonians with similar width-dependent properties that includes the π\pi-flux and the trivial square lattice models. As a further extension, we show that this new description makes it possible to identify various aspects of the physics of graphene ribbons with those predicted by models of quantum spin chains (QSCs)

    Phonon Rabi-assisted tunneling in diatomic molecules

    Full text link
    We study electronic transport in diatomic molecules connected to metallic contacts in the regime where both electron-electron and electron-phonon interactions are important. We find that the competition between these interactions results in unique resonant conditions for interlevel transitions and polaron formation: the Coulomb repulsion requires additional energy when electrons attempt phonon-assisted interlevel jumps between fully or partially occupied levels. We apply the equations of motion approach to calculate the electronic Green's functions. The density of states and conductance through the system are shown to exhibit interesting Rabi-like splitting of Coulomb blockade peaks and strong temperature dependence under the it interacting resonant conditions.Comment: Updated version, 5 pages, 4 figures, to be published in Phys. Rev. B on 9/1

    Local sublattice symmetry breaking for graphene with a centrosymmetric deformation

    Get PDF
    We calculate the local density of states (LDOS) for an infinite graphene sheet with a single centrosymmetric out-of-plane deformation, in order to investigate measurable strain signatures on graphene. We focus on the regime of small deformations and show that the strain-induced pseudomagnetic field induces an imbalance of the LDOS between the two triangular graphene sublattices in the region of the deformation. Real-space imaging reveals a characteristic sixfold symmetry pattern where the sublattice symmetry is broken within each fold, consistent with experimental and tight-binding observations. The open geometry we study allows us to make use of the usual continuum model of graphene and to obtain results independent of boundary conditions. We provide an analytic perturbative expression for the contrast between the LDOS of each sublattice, showing a scaling law as a function of the amplitude and width of the deformation. We confirm our results by a numerically exact iterative scattering matrix method

    Kondo Regime of a Quantum Dot Molecule: A Finite-U Slave-Boson Approach

    Full text link
    We study the electronic transport in a double quantum dot structure connected to leads in the Kondo regime for both series and parallel arrangements. By applying a finite-U slave boson technique in the mean field approximation we explore the effect of level degeneracy in the conductance through the system. Our results show that for the series connection, as the energy difference of the localized dot levels increases, the tunneling via the Kondo state is destroyed. For the parallel configuration, we find an interesting interplay of state symmetry and conductance. Our results are in good agrement with those obtained with other methods, and provide additional insights into the physics of the Kondo state in the double dot system.Comment: 4 pages, 5 figures, to appear in Physica
    corecore