146 research outputs found
Spherical symmetry in a dark energy permeated space-time
The properties of a spherically symmetric static space-time permeated of dark
energy are worked out. Dark energy is viewed as the strain energy of an
elastically deformable four dimensional manifold. The metric is worked out in
the vacuum region around a central spherical mass/defect in the linear
approximation. We discuss analogies and differences with the analogue in the de
Sitter space time and how these competing scenarios could be differentiated on
an observational ground. The comparison with the tests at the solar system
scale puts upper limits to the parameters of the theory, consistent with the
values obtained applying the classical cosmological tests.Comment: 14 pages, 1 figure, in press on Classical and Quantum Gravit
Cosmological constraints for the Cosmic Defect theory
The Cosmic Defect theory has been confronted with four observational
constraints: primordial nuclear species abundances emerging from the big bang
nucleosynthesis; large scale structure formation in the universe; cosmic
microwave background acoustic scale; luminosity distances of type Ia
supernovae. The test has been based on a statistical analysis of the a
posteriori probabilities for three parameters of the theory. The result has
been quite satisfactory and such that the performance of the theory is not
distinguishable from the one of the Lambda-CDM theory. The use of the optimal
values of the parameters for the calculation of the Hubble constant and the age
of the universe confirms the compatibility of the Cosmic Defect approach with
observations.Comment: 13 pages, 1 figure, in press on IJMP
From the elasticity theory to cosmology and vice versa
The paper shows how a generalization of the elasticity theory to four
dimensions and to space-time allows for a consistent description of the
homogeneous and isotropic universe, including the accelerated expansion. The
analogy is manifested by the inclusion in the traditional Lagrangian of general
relativity of an additional term accounting for the strain induced in the
manifold (i.e. in space-time) by the curvature, be it induced by the presence
of a texture defect or by a matter/energy distribution. The additional term is
sufficient to account for various observed features of the universe and to give
a simple interpretation for the so called dark energy. Then, we show how the
same approach can be adopted back in three dimensions to obtain the equilibrium
configuration of a given solid subject to strain induced by defects or applied
forces. Finally, it is shown how concepts coming from the familiar elasticity
theory can inspire new approaches to cosmology and in return how methods
appropriated to General Relativity can be applied back to classical problems of
elastic deformations in three dimensions.Comment: 11 pages, 3 figure
Constraining Lorentz-violating, Modified Dispersion Relations with Gravitational Waves
Modified gravity theories generically predict a violation of Lorentz
invariance, which may lead to a modified dispersion relation for propagating
modes of gravitational waves. We construct a parametrized dispersion relation
that can reproduce a range of known Lorentz-violating predictions and
investigate their impact on the propagation of gravitational waves. A modified
dispersion relation forces different wavelengths of the gravitational wave
train to travel at slightly different velocities, leading to a modified phase
evolution observed at a gravitational-wave detector. We show how such
corrections map to the waveform observable and to the parametrized
post-Einsteinian framework, proposed to model a range of deviations from
General Relativity. Given a gravitational-wave detection, the lack of evidence
for such corrections could then be used to place a constraint on Lorentz
violation. The constraints we obtain are tightest for dispersion relations that
scale with small power of the graviton's momentum and deteriorate for a steeper
scaling.Comment: 11 pages, 3 figures, 2 tables: title changed slightly, published
versio
Vector field theories in cosmology
Recently proposed theories based on the cosmic presence of a vectorial field
are compared and contrasted. In particular the so called Einstein aether theory
is discussed in parallel with a recent proposal of a strained space-time theory
(Cosmic Defect theory). We show that the latter fits reasonably well the cosmic
observed data with only one, or at most two, adjustable parameters, whilst
other vector theories use much more. The Newtonian limits are also compared.
Finally we show that the CD theory may be considered as a special case of the
aether theories, corresponding to a more compact and consistent paradigm.Comment: 19 pages, 1 figure, to appear on Phys. Rev.
Scintillations effects on satellite to Earth links for telecommunication and navigation purposes
Radio wave scintillations are rapid fluctuations in both amplitude and phase of signals propagating through the atmosphere. GPS signals can be affected by these disturbances which can lead to a complete loss of lock when the electron density strongly fluctuates around the background ionization level at small spatial scales. This paper will present recent improvements to the theoretical Global Ionospheric Scintillation Model (GISM), particularly tailored for satellite based navigation systems such GPS coupled with Satellite Based Augmentation System (SBAS). This model has been improved in order to take into account GPS constellation, signals, and receiver response to ionospheric
scintillation environments. A new modelling technique, able to describe the scintillation derived modifications
of transionospheric propagating fields is shown. Results from GPS derived experimental
measurements performed at high and low magnetic latitudes will show preliminary assessments of the scintillation impact on real receivers and system operations. Nevertheless, comparisons between
theoretical scintillation models, such as WBMOD and GISM, with GPS derived experimental data will be shown
- …