303,270 research outputs found

    Study of the Wealth Inequality in the Minority Game

    Get PDF
    To demonstrate the usefulness of physical approaches for the study of realistic economic systems, we investigate the inequality of players' wealth in one of the most extensively studied econophysical models, namely, the minority game (MG). We gauge the wealth inequality of players in the MG by a well-known measure in economics known as the modified Gini index. From our numerical results, we conclude that the wealth inequality in the MG is very severe near the point of maximum cooperation among players, where the diversity of the strategy space is approximately equal to the number of strategies at play. In other words, the optimal cooperation between players comes hand in hand with severe wealth inequality. We also show that our numerical results in the asymmetric phase of the MG can be reproduced semi-analytically using a replica method.Comment: 9 pages in revtex 4 style with 3 figures; minor revision with a change of title; to appear in PR

    AC Breakdown Characteristics of LDPE in the Presence of Crosslinking By-products.

    No full text
    LDPE films of 50?m thick were soaked into crosslinking byproducts which are acetophenone, ?-methylstyrene and cumyl alcohol. The samples were used to perform the breakdown strength (Eb) of the LDPE with the byproducts chemical reside in the sample. The AC breakdown measurements were conducted at a ramp rate of 50V/s at room temperature. Weibull plot is used to analyse the ac breakdown result. Comparing the soaked and un-soaked (fresh LDPE) samples, it does show a small reduction of the eta values as the LDPE films were soaked into the sample. It suggests that the breakdown strength is reduced by adding the byproducts in the LDPE film. However, as the range of breakdown strength of all samples are to be compared, these values fall in the same region which indicate no significant difference can be seen in all samples

    Improved Approximation Algorithms for Stochastic Matching

    Full text link
    In this paper we consider the Stochastic Matching problem, which is motivated by applications in kidney exchange and online dating. We are given an undirected graph in which every edge is assigned a probability of existence and a positive profit, and each node is assigned a positive integer called timeout. We know whether an edge exists or not only after probing it. On this random graph we are executing a process, which one-by-one probes the edges and gradually constructs a matching. The process is constrained in two ways: once an edge is taken it cannot be removed from the matching, and the timeout of node vv upper-bounds the number of edges incident to vv that can be probed. The goal is to maximize the expected profit of the constructed matching. For this problem Bansal et al. (Algorithmica 2012) provided a 33-approximation algorithm for bipartite graphs, and a 44-approximation for general graphs. In this work we improve the approximation factors to 2.8452.845 and 3.7093.709, respectively. We also consider an online version of the bipartite case, where one side of the partition arrives node by node, and each time a node bb arrives we have to decide which edges incident to bb we want to probe, and in which order. Here we present a 4.074.07-approximation, improving on the 7.927.92-approximation of Bansal et al. The main technical ingredient in our result is a novel way of probing edges according to a random but non-uniform permutation. Patching this method with an algorithm that works best for large probability edges (plus some additional ideas) leads to our improved approximation factors
    • …
    corecore