1,587 research outputs found

    Electronic states and magnetic structure at the Co3O4 (110) surface: a first principles study

    Full text link
    Tricobalt tetraoxide (Co3O4) is an important catalyst and Co3O4(110) is a frequently exposed surface in Co3O4 nanomaterials. We employed Density-functional theory with on-site Coulomb repulsion U term to study the atomic structures, energetics, magnetic and electronic properties of the two possible terminations, A and B, of this surface. These calculations predict A as the stable termination in a wide range of oxygen chemical potentials, consistent with recent experimental observations. The Co3+ ions do not have a magnetic moment in the bulk, but become magnetic at the surface, which leads to surface magnetic orderings different from the one in the bulk. Surface electronic states are present in the lower half of the bulk band gap and cause partial metallization of both surface terminations. These states are responsible for the charge compensation mechanism stabilizing both polar terminations. The computed critical thickness for polarity compensation is 4 layers

    An ab-initio converse NMR approach for pseudopotentials

    Full text link
    We extend the recently developed converse NMR approach [T. Thonhauser, D. Ceresoli, A. Mostofi, N. Marzari, R. Resta, and D. Vanderbilt, J. Chem. Phys. \textbf{131}, 101101 (2009)] such that it can be used in conjunction with norm-conserving, non-local pseudopotentials. This extension permits the efficient ab-initio calculation of NMR chemical shifts for elements other than hydrogen within the convenience of a plane-wave pseudopotential approach. We have tested our approach on several finite and periodic systems, finding very good agreement with established methods and experimental results.Comment: 11 pages, 2 figures, 4 tables; references expande

    Mechanism of ferroelectric instabilities in non d^0 perovskites: LaCrO_3 versus CaMnO_3

    Full text link
    The incompatibility of partial d occupation on the perovskite B-site with the standard charge transfer mechanism for ferroelectricity has been a central paradigm in multiferroics research. Nevertheless, it was recently shown by density functional theory calculations that CaMnO_3 exhibits a polar instability that even dominates over the octahedral tilting for slightly enlarged unit cell volume. Here, we present similar calculations for LaCrO_3, which has the same d^3 B-site electron configuration as CaMnO_3. We find that LaCrO_3 exhibits a very similar, albeit much weaker, polar instability as CaMnO_3. In addition, while the Born effective charge (BEC) of the Mn^{4+} cation in CaMnO_3 is highly anomalous, the BEC of Cr^{3+} in LaCrO_3 is only slightly enhanced. By decomposing the BECs into contributions of individual Wannier functions we show that the ferroelectric instabilities in both systems can be understood in terms of charge transfer between TM d and O p states, analogously to the standard d^0 perovskite ferroelectrics.Comment: 6 pages, 4 figures, 2 table

    Towards First-principles Electrochemistry

    Full text link
    Chemisorbed molecules at a fuel cell electrode are a very sensitive probe of the surrounding electrochemical environment, and one that can be accurately monitored with different spectroscopic techniques. We develop a comprehensive electrochemical model to study molecular chemisorption at either constant charge or fixed applied voltage, and calculate from first principles the voltage dependence of vibrational frequencies -- the vibrational Stark effect -- for CO adsorbed on close-packed platinum electrodes. The predicted vibrational Stark slopes are found to be in very good agreement with experimental electrochemical spectroscopy data, thereby resolving previous controversies in the quantitative interpretation of in-situ experiments and elucidating the relation between canonical and grand-canonicaldescriptions of vibrational surface phenomena.Comment: 10 pages, 2 figure

    A Peculiar Family of Jupiter Trojans: the Eurybates

    Get PDF
    The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates family's members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials. To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present.Comment: 23 pages, 2 figures, paper accepted for publication in Icaru

    Transition state method and Wannier functions

    Full text link
    We propose a computational scheme for materials where standard Local Density Approximation (LDA) fails to produce a satisfactory description of excitation energies. The method uses Slater's "transition state" approximation and Wannier functions basis set. We define a correction to LDA functional in such a way that its variation produces one-electron energies for Wannier functions equal to the energies obtained in "transition state" constrained LDA calculations. In the result eigenvalues of the proposed functional could be interpreted as excitation energies of the system under consideration. The method was applied to MgO, Si, NiO and BaBiO3_3 and gave an improved agreement with experimental data of energy gap values comparing with LDA.Comment: 13 pages, 6 figures, 1 tabl

    Electronic structure and bonding properties of cobalt oxide in the spinel structure

    Full text link
    The spinel cobalt oxide Co3O4 is a magnetic semiconductor containing cobalt ions in Co2+ and Co3+ oxidation states. We have studied the electronic, magnetic and bonding properties of Co3O4 using density functional theory (DFT) at the Generalized Gradient Approximation (GGA), GGA+U, and PBE0 hybrid functional levels. The GGA correctly predicts Co3O4 to be a semiconductor, but severely underestimates the band gap. The GGA+U band gap (1.96 eV) agrees well with the available experimental value (~ 1.6 eV), whereas the band gap obtained using the PBE0 hybrid functional (3.42 eV) is strongly overestimated. All the employed exchange-correlation functionals predict 3 unpaired d electrons on the Co2+ ions, in agreement with crystal field theory, but the values of the magnetic moments given by GGA+U and PBE0 are in closer agreement with the experiment than the GGA value, indicating a better description of the cobalt localized d states. Bonding properties are studied by means of Maximally Localized Wannier Functions (MLWFs). We find d-type MLWFs on the cobalt ions, as well as Wannier functions with the character of sp3d bonds between cobalt and oxygen ions. Such hybridized bonding states indicate the presence of a small covalent component in the primarily ionic bonding mechanism of this compound.Comment: 24 pages, 8 figure
    • …
    corecore