57 research outputs found
Attractor Flows from Defect Lines
Deforming a two dimensional conformal field theory on one side of a trivial
defect line gives rise to a defect separating the original theory from its
deformation. The Casimir force between these defects and other defect lines or
boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns
out, that these flows are constant reparametrizations of gradient flows of the
g-functions of the chosen defect or boundary condition. The special flows
associated to supersymmetric boundary conditions in N=(2,2) superconformal
field theories agree with the attractor flows studied in the context of black
holes in N=2 supergravity.Comment: 28 page
Rigidity and defect actions in Landau-Ginzburg models
Studying two-dimensional field theories in the presence of defect lines
naturally gives rise to monoidal categories: their objects are the different
(topological) defect conditions, their morphisms are junction fields, and their
tensor product describes the fusion of defects. These categories should be
equipped with a duality operation corresponding to reversing the orientation of
the defect line, providing a rigid and pivotal structure. We make this
structure explicit in topological Landau-Ginzburg models with potential x^d,
where defects are described by matrix factorisations of x^d-y^d. The duality
allows to compute an action of defects on bulk fields, which we compare to the
corresponding N=2 conformal field theories. We find that the two actions differ
by phases.Comment: 53 pages; v2: clarified exposition of pivotal structures, corrected
proof of theorem 2.13, added remark 3.9; version to appear in CM
Remarks on quiver gauge theories from open topological string theory
We study effective quiver gauge theories arising from a stack of D3-branes on certain Calabi-Yau singularities. Our point of view is a first principle approach via open topological string theory. This means that we construct the natural A-infinity-structure of open string amplitudes in the associated D-brane category. Then we show that it precisely reproduces the results of the method of brane tilings, without having to resort to any effective field theory computations. In particular, we prove a general and simple formula for effective superpotentials
Triangle-generation in topological D-brane categories
Tachyon condensation in topological Landau-Ginzburg models can generally be
studied using methods of commutative algebra and properties of triangulated
categories. The efficiency of this approach is demonstrated by explicitly
proving that every D-brane system in all minimal models of type ADE can be
generated from only one or two fundamental branes.Comment: 34 page
Algorithmic deformation of matrix factorisations
Branes and defects in topological Landau-Ginzburg models are described by
matrix factorisations. We revisit the problem of deforming them and discuss
various deformation methods as well as their relations. We have implemented
these algorithms and apply them to several examples. Apart from explicit
results in concrete cases, this leads to a novel way to generate new matrix
factorisations via nilpotent substitutions, and to criteria whether boundary
obstructions can be lifted by bulk deformations.Comment: 30 page
Quivers from Matrix Factorizations
We discuss how matrix factorizations offer a practical method of computing
the quiver and associated superpotential for a hypersurface singularity. This
method also yields explicit geometrical interpretations of D-branes (i.e.,
quiver representations) on a resolution given in terms of Grassmannians. As an
example we analyze some non-toric singularities which are resolved by a single
CP1 but have "length" greater than one. These examples have a much richer
structure than conifolds. A picture is proposed that relates matrix
factorizations in Landau-Ginzburg theories to the way that matrix
factorizations are used in this paper to perform noncommutative resolutions.Comment: 33 pages, (minor changes
The tensor structure on the representation category of the triplet algebra
We study the braided monoidal structure that the fusion product induces on
the abelian category -mod, the category of representations of
the triplet -algebra . The -algebras are a
family of vertex operator algebras that form the simplest known examples of
symmetry algebras of logarithmic conformal field theories. We formalise the
methods for computing fusion products, developed by Nahm, Gaberdiel and Kausch,
that are widely used in the physics literature and illustrate a systematic
approach to calculating fusion products in non-semi-simple representation
categories. We apply these methods to the braided monoidal structure of
-mod, previously constructed by Huang, Lepowsky and Zhang, to
prove that this braided monoidal structure is rigid. The rigidity of
-mod allows us to prove explicit formulae for the fusion product
on the set of all simple and all projective -modules, which were
first conjectured by Fuchs, Hwang, Semikhatov and Tipunin; and Gaberdiel and
Runkel.Comment: 58 pages; edit: added references and revisions according to referee
reports. Version to appear on J. Phys.
Higher string functions, higher-level Appell functions, and the logarithmic ^sl(2)_k/u(1) CFT model
We generalize the string functions C_{n,r}(tau) associated with the coset
^sl(2)_k/u(1) to higher string functions A_{n,r}(tau) and B_{n,r}(tau)
associated with the coset W(k)/u(1) of the W-algebra of the logarithmically
extended ^sl(2)_k conformal field model with positive integer k. The higher
string functions occur in decomposing W(k) characters with respect to level-k
theta and Appell functions and their derivatives (the characters are neither
quasiperiodic nor holomorphic, and therefore cannot decompose with respect to
only theta-functions). The decomposition coefficients, to be considered
``logarithmic parafermionic characters,'' are given by A_{n,r}(tau),
B_{n,r}(tau), C_{n,r}(tau), and by the triplet \mathscr{W}(p)-algebra
characters of the (p=k+2,1) logarithmic model. We study the properties of
A_{n,r} and B_{n,r}, which nontrivially generalize those of the classic string
functions C_{n,r}, and evaluate the modular group representation generated from
A_{n,r}(tau) and B_{n,r}(tau); its structure inherits some features of modular
transformations of the higher-level Appell functions and the associated
transcendental function Phi.Comment: 34 pages, amsart++, times. V2: references added; minor changes; some
nonsense in B.3.3. correcte
From boundary to bulk in logarithmic CFT
The analogue of the charge-conjugation modular invariant for rational
logarithmic conformal field theories is constructed. This is done by
reconstructing the bulk spectrum from a simple boundary condition (the analogue
of the Cardy `identity brane'). We apply the general method to the c_1,p
triplet models and reproduce the previously known bulk theory for p=2 at c=-2.
For general p we verify that the resulting partition functions are modular
invariant. We also construct the complete set of 2p boundary states, and
confirm that the identity brane from which we started indeed exists. As a
by-product we obtain a logarithmic version of the Verlinde formula for the
c_1,p triplet models.Comment: 35 pages, 2 figures; v2: minor corrections, version to appear in
J.Phys.
The logarithmic triplet theory with boundary
The boundary theory for the c=-2 triplet model is investigated in detail. In
particular, we show that there are four different boundary conditions that
preserve the triplet algebra, and check the consistency of the corresponding
boundary operators by constructing their OPE coefficients explicitly. We also
compute the correlation functions of two bulk fields in the presence of a
boundary, and verify that they are consistent with factorisation.Comment: 43 pages, LaTeX; v2: references added, typos corrected, footnote 4
adde
- …