140 research outputs found
Separating dijet resonances using the color discriminant variable
Color-singlet and color-octet vector bosons predicted in theories beyond the Standard Model have the potential to be discovered as dijet resonances at the LHC. A color-singlet resonance that has leptophobic couplings needs further investigation to be distinguished from a color-octet one. In previous work, we introduced a method for discriminating between the two kinds of resonances when their couplings are flavor-universal, using measurements of the dijet resonance mass, total decay width and production cross-section. Here, we describe two extensions of that work. First, we broaden the method to the case where the vector resonances have flavor non-universal couplings, by incorporating measurements of the heavy-flavor decays of the resonance. Second, we apply the method to separating vector bosons from color-octet scalars and excited quarks
Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC
We first build a minimal model of vector-like quarks where the dominant Higgs
boson production process at LHC -- the gluon fusion -- can be significantly
suppressed, being motivated by the recent stringent constraints from the search
for direct Higgs production over a wide Higgs mass range. Within this model,
compatible with the present experimental constraints on direct Higgs searches,
we demonstrate that the Higgs () production via a heavy vector-like
top-partner () decay, , , allows to
discover a Higgs boson at the LHC and measure its mass, through the decay
channels or . We also comment on the recent hint
in LHC data from a possible GeV Higgs scalar, in the presence of
heavy vector-like top quarks.Comment: 14 pages, 8 figure
Discovering the composite Higgs through the decay of a heavy fermion
A possible composite nature of the Higgs could be revealed at the early stage
of the LHC, by analyzing the channels where the Higgs is produced from the
decay of a heavy fermion. The Higgs production from a singly-produced heavy
bottom, in particular, proves to be a promising channel. For a value \lambda=3
of the Higgs coupling to a heavy bottom, for example, we find that, considering
a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible
at the 8 TeV LHC with 30 fb^{-1} if the heavy bottom is lighter than roughly
530 GeV (while an observation is possible for heavy bottom masses up to 650
GeV). Such a relatively light heavy bottom is realistic in composite Higgs
models of the type considered and, up to now, experimentally allowed. At
\sqrt{s}=14 TeV the LHC sensitivity on the channel increases significantly.
With \lambda=3 a discovery can occur, with 100 fb^{-1}, for heavy bottom masses
up to 1040 GeV. In the case the heavy bottom was as light as 500 GeV, the 14
TeV LHC would be sensitive to the measure of the \lambda\ coupling in basically
the full range \lambda>1 predicted by the theory.Comment: 25 pp. v2: Minor changes. v3: Version accepted for publication in
JHEP. v4: typos fixe
From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load databases
We define and demonstrate a procedure for quick assessment of site-specific
lifetime fatigue loads using simplified load mapping functions (surrogate
models), trained by means of a database with high-fidelity load simulations.
The performance of five surrogate models is assessed by comparing
site-specific lifetime fatigue load predictions at 10 sites using an
aeroelastic model of the DTU 10 MW reference wind turbine. The surrogate
methods are polynomial chaos expansion, quadratic response surface, universal
Kriging, importance sampling, and nearest-neighbor interpolation. Practical
bounds for the database and calibration are defined via nine environmental
variables, and their relative effects on the fatigue loads are evaluated by
means of Sobol sensitivity indices. Of the surrogate-model methods,
polynomial chaos expansion provides an accurate and robust performance in
prediction of the different site-specific loads. Although the Kriging
approach showed slightly better accuracy, it also demanded more computational
resources.</p
ATLAS Z Excess in Minimal Supersymmetric Standard Model
Recently the ATLAS collaboration reported a 3 sigma excess in the search for
the events containing a dilepton pair from a Z boson and large missing
transverse energy. Although the excess is not sufficiently significant yet, it
is quite tempting to explain this excess by a well-motivated model beyond the
standard model. In this paper we study a possibility of the minimal
supersymmetric standard model (MSSM) for this excess. Especially, we focus on
the MSSM spectrum where the sfermions are heavier than the gauginos and
Higgsinos. We show that the excess can be explained by the reasonable MSSM mass
spectrum.Comment: 13 pages, 7 figures; published versio
Bounding wide composite vector resonances at the LHC
In composite Higgs models (CHMs), electroweak precision data generically push
colourless composite vector resonances to a regime where they dominantly decay
into pairs of light top partners. This greatly attenuates their traces in
canonical collider searches, tailored for narrow resonances promptly decaying
into Standard Model final states. By reinterpreting the CMS same-sign dilepton
(SS2) analysis at the Large Hadron Collider (LHC), originally designed to
search for top partners with electric charge , we demonstrate its
significant coverage over this kinematical regime. We also show the reach of
the 13 TeV run of the LHC, with various integrated luminosity options, for a
possible upgrade of the SS2 search. The top sector of CHMs is found to be
more fine-tuned in the presence of colourless composite resonances in the few
TeV range.Comment: 9 pages, 5 figures. Minor corrections for publication in JHE
Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores
Diet can affect the diversity and composition of gut microbiota. Usage of antibiotics in food production and in human or veterinary medicine has resulted in the emergence of commensal antibiotic resistant bacteria in the human gut. The incidence of erythromycin-resistant lactic acid bacteria (LAB) in the feces of healthy vegans, ovo-lacto vegetarians and omnivores was analyzed. Overall, 155 LAB were isolated and characterized for their phenotypic and genotypic resistance to erythromycin. The isolates belonged to 11 different species within the Enterococcus and Streptococcus genera. Enterococcus faecium was the dominant species in isolates from all the dietary categories. Only 97 out of 155 isolates were resistant to erythromycin after Minimum Inhibitory Concentration (MIC) determination; among them, 19 isolates (7 from vegans, 4 from ovo-lacto vegetarians and 8 from omnivores) carried the erm(B) gene. The copresence of erm(B) and erm(A) genes was only observed in Enterococcus avium from omnivores. Moreover, the transferability of erythromycin resistance genes using multidrug-resistant (MDR) cultures selected from the three groups was assessed, and four out of six isolates were able to transfer the erm(B) gene. Overall, isolates obtained from the omnivore samples showed resistance to a greater number of antibiotics and carried more tested antibiotic resistance genes compared to the isolates from ovo-lacto vegetarians and vegans. In conclusion, our results show that diet does not significantly affect the occurrence of erythromycin-resistant bacteria and that commensal strains may act as a reservoir of antibiotic resistance (AR) genes and as a source of antibiotic resistance spreading
Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores
Diet can affect the diversity and composition of gut microbiota. Usage of antibiotics in food production and in human or veterinary medicine has resulted in the emergence of commensal antibiotic resistant bacteria in the human gut. The incidence of erythromycin-resistant lactic acid bacteria (LAB) in the feces of healthy vegans, ovo-lacto vegetarians and omnivores was analyzed. Overall, 155 LAB were isolated and characterized for their phenotypic and genotypic resistance to erythromycin. The isolates belonged to 11 different species within the Enterococcus and Streptococcus genera. Enterococcus faecium was the dominant species in isolates from all the dietary categories. Only 97 out of 155 isolates were resistant to erythromycin after Minimum Inhibitory Concentration (MIC) determination; among them, 19 isolates (7 from vegans, 4 from ovo-lacto vegetarians and 8 from omnivores) carried the erm(B) gene. The copresence of erm(B) and erm(A) genes was only observed in Enterococcus avium from omnivores. Moreover, the transferability of erythromycin resistance genes using multidrug-resistant (MDR) cultures selected from the three groups was assessed, and four out of six isolates were able to transfer the erm(B) gene. Overall, isolates obtained from the omnivore samples showed resistance to a greater number of antibiotics and carried more tested antibiotic resistance genes compared to the isolates from ovo-lacto vegetarians and vegans. In conclusion, our results show that diet does not significantly affect the occurrence of erythromycin-resistant bacteria and that commensal strains may act as a reservoir of antibiotic resistance (AR) genes and as a source of antibiotic resistance spreading
- …